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Vacancy-Vacancy Interaction on Ge-Covered Si(001)
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When Ge atoms are deposited onto a Si(001) substrate, dimer vacancies are created in the strained
system. At sufficiently high concentrations, interactions between the vacancies cause them to line up,
resulting in the (2 X n) reconstruction. By analyzing the thermal fluctuations around the ideal (2 X n)
structure with scanning tunneling microscopy and using transfer matrix theory, the form of the dimer
vacancy-vacancy interaction and a value for its magnitude have been determined.

PACS numbers: 68.35.Md, 68.35.Bs, 68.35.Dv

In lattice-mismatched overlayer systems, the effort of
the system to minimize lattice strain can produce defects
such as misfit dislocations and vacancies. The interaction
between these defects may lead to complicated surface
reconstruction. The heteroepitaxy of Ge on Si(001) serves
as a model lattice-mismatched system. Bulk Ge has
a lattice constant 4.3% larger than that of Si. %hen
Ge atoms are deposited on the Si surface, they arrange
themselves in registry with the substrate Si atoms, but
the Ge overlayer is compressed in order to accommodate
the 4.3% difference in lattice size. The strong strain field
produced in the system is responsible, at least partially, for
a number of phenomena, including the increase of dimer
vacancy concentration in the surface layer with increasing
Ge coverage [1], the ordering of the dimer vacancies into
the (2 X n) reconstruction [2—4], reversal of the relative
step roughness [5,6], the formation of "microhuts" [7],
and the Stranski-Krastanov growth mode for Ge films
on Si [8].

On a clean Si(001) surface, the top-layer atoms dimer-
ize and the dimers align to form dimer rows, leading to the

(2 x 1) reconstruction [9,10]. On a Ge-covered Si(001)
surface, dimer rows still form, but the surface reconstruc-
tion does not have a simple (2 X 1) symmetry. Instead,
some dimers are missing, leaving behind dimer vacancies
(DV's). With increasing Ge coverage, DV's on differ-
ent dimer rows order in the direction perpendicular to the
dimer rows, forming vacancy lines (VL's). On average,
two adjacent VL's are separated by nao, giving rise to
the (2 X n) reconstruction; ao here is the surface lattice
spacing. Figure 1 shows a scanning tunneling microscopy
(STM) image of this (2 X n) structure, where the VL's are
visible as dark lines.

The ordering of the dimer vacancies is driven by
an intrinsic dimer vacancy-vacancy (DV-DV) interaction,
whose form and strength have been unknown. In this
Letter, we carry out an experimental and theoretical
study of this interaction. The surface morphology, in

particular the meandering of the VL's, is dictated by the

competition between the ordering process, driven by the
DV-DV interaction, and the disordering process, driven

by a desire of the system to minimize its free energy.

FIG. 1. STM image of the Ge-covered Si(001) surface show-
ing the (2 X n) reconstruction. Size of the image is -350 X
350 A'. The Ge coverage is -1.5 ML. The dark lines are
dimer vacancy lines, which are perpendicular to the dimer rows.

By analyzing the thermal fluctuations around the ideal
(2 x n) structure using STM, we determine the form as
well as the magnitude of the DV-DV interaction.

The experiment is carried out in UHV. Silicon (001)
samples with miscut angles less than 0.03' are used
as substrates. They are cleaned by Aashing to above
1200'C and subsequently annealed at 600'C for 5 min

before Ge deposition; this procedure is known to yield
atomically clean Si surfaces [11]. The deposition rate is
-0.01 monolayer (ML)/min from a resistively heated Ge
wafer. About 1.5 ML of Ge is deposited on a Si(001)
substrate held at 400'C; the overlayer is annealed at the

same temperature for 1 h to allow for the equilibration of
the meandering of vacancy lines; and the sample is then

quenched and transferred to the STM for imaging. The ra-

diation quench brings the substrate temperature from 700
to 400 K in less than 10 s. Using the observation [12] that

the diffusion of dimer vacancies on clean Si(001) occurs
on the time scale of one displacement in —15 s at 500 K.
we estimate the equilibrium temperature corresponding to
the vacancy line morphology we observe at room tem-

perature to lie between 500 and 700 K. Topographic
STM images are taken with a sample bias V,- ——2 V.
and a tunneling current I, —0.1 nA.
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FIG. 2. A schematic diagram showing the atomic structure of
the (2 x n) reconstruction. The open and solid circles represent
the top- and second-layer atoms, respectively. Two connected
atoms form a dimer, and the dimers align into dimer rows
labeled by i, i 1, etc. Within each dimer vacancy are four
rebonded second-layer atoms. Three vacancy lines, running
vertically in the picture, are labeled as VLl to VL3. Also
defined are the h axis; the distance between two neighboring
vacancy lines, n, and the separation I of two vacancies on
adjacent dimer rows.

The vacancy lines shown in Fig. 1 are not straight.

The meandering of a VL results from thermally induced

relative displacements between neighboring vacancies
(see Fig. 2). By studying the statistical properties of these

displacements, we can extract detailed information on the
DV-DV interaction. Before going into any mathematical

details, we discuss qualitative features of this interaction.
It has been proposed [13] and supported by calculations

[1] that, within each DV, the second-layer atoms rebond.
The rebonded atoms are pulled together (see Fig. 2),
giving rise to a large tensile stress along the top-
layer dimer row. The rebonding does not induce any
long-range elastic field in the perpendicular direction

[1]. The tensile stress due to second-layer rebonding

partially cancels the compressive stress due to Ge/Si
lattice mismatch, thus lowering the elastic energy. There
exists a preferred spacing nao between two neighboring
DV's on the same dimer row. When they are too far apart,
the compressive stress is not relieved enough; if they are
too close, the stress is "over-relieved. " Effectively, this

balancing of tensile and compressive stresses amounts to
a short-range repulsive, long-range attractive interaction
between DV's on the same dimer row [1,14], i.e., the

qualitative features of the vacancy interaction suggested

by Ref. [1] should be applicable. When individual DV's
are on diferent dimer rows, the interaction between them

must be short-range attractive, based on the very fact that

they prefer to order into vacancy lines.
The qualitative analysis given above reveals the na-

ture of the problem we must tackle: a two-dimensional

(2D) interacting system. Fortunately, to a very good ap-
proximation this complicated problem can be simplified
into a one-dimensional (1D) one. In the 1D model, the

system consists of a collection of vacancy lines, each
moving in an effective potential, V(h), representing the
collective effect of all the other VL's. The validity of this

mean-field approximation will later be checked by self-

consistency, but here we provide an a priori justification.
The mean-field approximation neglects any possible cor-
relation between the meandering of neighboring vancancy
lines. Correlated meandering exists if the probability of
exciting a vacancy-vacancy displacement in a given VL
depends on the existence or direction of the displacements
in the neighboring VL's (see Fig. 2). From the STM
images, we have analyzed the probability of forming a
thermal displacement in a given vacancy line, and found

that it is independent of the configuration of the neighbor-

ing VL's. Therefore, the above described correlation is
statistically negligible in the present case, suggesting that

a mean-field approach is appropriate.
The problem now reduces to understanding the behav-

ior of a single vacancy line in an external field V(h). The
position of each dimer vacancy in this line is specified

by h;, with the h axis pointing in the dimer row direc-
tion, measured from the mean position of the VL. The
subscript i denotes the location of the dimer row contain-

ing the vacancy (see Fig. 2). Thermal excitation causes
a relative displacement between the vacancies on adjacent
dimer rows, e.g. , rows i and i + 1, making h; 4 h;+~,
and a length of the displacement (i.e., the separation
of the DV's when they are on adjacent dimer rows),
I = ~h;

—h;+~~. The problem can be further simplified

if the DV-DV interaction along the dimer vacancy line is

very short range. Consider three consecutive dimer va-

cancies in a vacancy line, DV1, DV2, and DV3 (i.e., on
dimer rows i = 1,2, 3), and two possible relative displace-
ments: one between DV1 and DV2 and the other between
DV2 and DV3. It is straightforward to show that if there
is no directional correlation between the two relative dis-

placements, there will be no interaction between the two
next-nearest-neighboring dimer vacancies (i.e., DV1 and

DV3). We have measured the formation probability of a
relative displacement in a VL and found that it is indepen-
dent of the existence or the direction of any other relative
displacement on the same vacancy line. Therefore, we
can neglect any but nearest-neighbor interactions along a
line of DV's. Under these constraints this problem can
be solved exactly within the framework of transfer matrix

theory. The Hamiltonian of the VL is

HHh;H = QE(h;, h;, ) + g V(h;),

where each pair of adjacent DV's has an interaction
energy E(h;, h;+&) that depends only on their separation I:
E(h;, h;+~) = E(l). In order to determine both E(h;, h;+~)
and V(h), we first introduce the transfer matrix, T, whose
elements are given by

Th, I„=exp{—pE(h&, h2) —
2 p[V(h~) + V(h2)]), (2)

where p ' = kBT, ke is the Boltzmann constant, and
T is the equilibrium temperature. Using Eqs. (1) and

851



VOLUME 73, NUMBER 6 PHYSICAL REVIEW LETTERS 8 AUGUsT 1994

P(l) = A
' exp[ —PE(l)jgexp( —2P[V(h~) + V(h~ —l)j)

hl

X Phh) Phh( —l,
where A is the largest eigenvalue of the transfer matrix,
Ph is the distribution function of the displacements of
the VL around its mean position, given by the frequency
of occurrence of the DV's having a particular value of
h. That is, Ph is the normalized histogram of the h

coordinates of all the DV's in a VL measured from its
mean position.

Because our STM images are typically about 400 A
x 400 A., it is impossible to locate accurately the mean
position of a VL solely from these images and therefore
the Ph distribution cannot be obtained directly from the
images. However, it can be obtained indirectly from P„,
the probability distribution of n, where n by definition is
the distance between adjacent dimer vacancies on a given
dimer row. In the present case, where the meandering
of neighboring VL s is uncorrelated, P„is simply a
convolution of two independent probability distributions:
Ph(hi;) and Ph(h2;), where hi; and h2; are respectively
the h coordinates of two neighboring dimer vacancies
on dimer row i. Therefore, once the P„distribution
is measured from the images, we can obtain Ph by
deconvolution. The P„distribution obtained by analyzing
the STM images is plotted in Fig. 3 together with a
Gaussian fit. The width of the Gaussian is w„=1.67ap.
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FIG. 3. The probability distribution of the separation of two
neighboring dimer vacancies on the same dimer row, P„(n).
More than 1000 separations are measured. The squares are
experimental data and the curve is a Gaussian fit. Error bars
represent statistical errors in the counting.

(2), we can express the probability of finding a relative
displacement I as

2
P(l) 6 (h& hp l)Th~ hp pph3

' ' Th~ ~h~ Th~h
{h,}

(3)

where Z is the partition function. After some algebra, we
derive from Eq. (3)

The deconvolution yields a Gaussian form also for Ph, but
with a smaller width, wg = w„/+2 = 1.20ap.

The fact that the Ph distribution is Gaussian is not
at all surprising if one realizes that the profile of a VL
can be equivalently viewed as the trace of a 10 random
walk in an external potential V(h). If the potential is
quadratic, P V(h) = (1/2)kh2, the trace follows precisely
a Gaussian distribution [15,16]. In the present ease, our
early qualitative analysis has led to the conclusion that
the mean-field potential V(h) has a minimum at the mean
position of the VL located at h = 0. The leading term
in the expansion of V(h) at the minimum is therefore
quadratic. Assuming a quadratic form for V(h), and
inserting into Eq. (4) together with the Gaussian form of
Ph, Eq. (5), we obtain

PE(l) = —In ——(k + w, , )l
P(l) 1

2P(0) 8
(5)

Equation (5) provides one of the key relationships from
which the interaction energy E(l) between two DV's on
neighboring dimer rows as a function of their separation I

can be extracted. Equation (5), without the second term
on the right-hand side, is the expression for the interac-
tion energy in the case of no external confining potential
V(h) acting on the VL. The effect of the confinement is
represented by the second term, which vanishes identi-
cally when k = 0 (wh ~ for a free random walker). In
this equation, wh has already been obtained and P(l) is
directly obtained from the STM images by counting the
occurrence of relative displacements of length I, but the
strength of the mean-field potential, k, is yet to be deter-
mined. In order to extract the values of both E(l) and
k simultaneously we must invoke a second relationship.
This second relationship is provided by self-consistency
in the Metropolis Monte Carlo simulations to gener-
ate the equilibrium configurations of the VL's using the
Hamiltonian defined in Eq. (1), with the second term on
the right-hand side given by P V(h) = (1/2)kh2. For each
trial value of k, E(l) is calculated according to Eq. (5).
The program generates equilibrium vacancy line configu-
rations, from which the distribution Ph(h) is calculated.
This distribution in turn is compared to the Gaussian form
with wh = 1.20ap. The trial value of k is then adjusted
according to this comparison until the computer gener-
ated Ph(h) converges to the correct Gaussian distribution.
This convergence serves as the second relationship neces-
sary to determine the values of E(l) and k. Convergence
is mandatory if the mean-field model is valid.

Our simulations following this scheme yield
k = (0.075 ~ 0.008)ap . The corresponding interac-
tion energy E(l) between two dimer vacancies on adjacent
dimer rows separated by I is plotted versus I in Fig. 4.
This interaction is attractive and short ranged; it becomes
zero when the relative displacement between the DV's
on neighboring dimer rows is beyond 4ap. The origin
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FIG. 4. The interaction energy of dimer vacancies on adjacent
dimer rows vs their separation. The solid line guides the eye.
The error bars contain statistical error in the counting, the error
in determining wI„and the error in the k value determined from
the simulation.

of the energy axis in Fig. 4 is chosen so that E(5) = 0,
indicating that we are using the energy of two well
separated, hence noninteracting, dimer vacancies as the
energy reference. If we use limits of 500 and 700 K
for the temperature at which the VL's in Fig. 1 are at
equilibrium, the strength of the attractive interaction, or
equivalently the binding energy of two dimer vacancies,
is between 180 and 250 meV. The physical origin of
this attractive interaction is probably a delicate relaxation
of the local atomic structure around the two neighboring
dimer vacancies. When a vacancy is created on the
surface, atoms around it relax to find the lowest energy
configuration. For two close-lying vacancies, the local
relaxation associated with each vacancy will overlap and
interfere, leading to an effective interaction between the
vacancies. Preliminary results of calculation of vacancy
interaction energies in Si(001) using a Stillinger-Weber
potential and allowing complete relaxation of the sur-
rounding atoms confirm the form, the range, and the order
of magnitude of this interaction [14].

Because of the likely intermixing of Ge and Si [17],
the main results here are obtained for an unknown
stoichiometry of the topmost layers. The determination
of this stoichiometry is extremely difficult and cannot
be done by STM. The exact value of the interaction
energy and the strain field associated with each dimer
vacancy are expected to depend on the composition of the
topmost layers. The interaction energies are also expected
to depend on the Ge coverage. At higher coverage of
Ge, for example, 3 ML as in Ref. [1],the overlayer starts
to break into islands. We chose 1.5 ML of Ge for our
analysis to avoid the additional complexities introduced
by the islands.

In conclusion, the dimer vacancies on a Ge-covered
Si(001) surface interact strongly with each other, and the

interaction is highly anisotropic. For dimer vacancies on
the same dimer row, the interaction is short-range repul-
sive and long-range attractive and balances at nao. The
interaction can be well described by a mean-field poten-
tial, a manifestation of the elastic field associated with
the dimer vacancies. On the other hand, a short-range at-
tractive interaction exists between dimer vacancies on dif-
ferent dimer rows. It is significant only when the dimer
vacancies are on adjacent dimer rows. The interaction
energy between these dimer vacancies is determined as a
function of their separation. The binding energy (i.e., at
zero separation) is on the order of 200 meV and falls off
to zero in about four lattice constants. The physical origin
of this interaction is likely the local structural relaxation
associated with each vacancy.
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