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Roughness of Two-Dimensional Cracks in Wood
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Fractures in wood that are parallel to the fibers will be quasi-two-dimensional in the orthogonal
directions. We have measured the roughness of fractures in Malaysian nemesu and Norwegian spruce
wood. Tangential and radial fracture surfaces have very different morphologies due to the strong

anisotropy of wood, but the scaling properties seem to be the same.

We determine the roughness

exponent { to be 0.68 * 0.04, where the average is taken over different woods, fracture modes, and
analyses. These results support the conjecture of a universal roughness exponent of brittle fracture

surfaces.

PACS numbers: 61.43.Hv, 07.60.—j, 62.20.Mk

Since the seminal work of Mandelbrot, Passoja, and
Paullay [1] there has been a simmering interest in the
geometrical properties of fracture surfaces. There is
now ample evidence [2] that fracture surfaces possess
statistically self-affine scaling properties [3].

A self-affine surface, z(x,y), isotropic in the (x,y)
plane, is invariant under the scale transformation

(x,y,2) = (Ax, Ay, A¢2), (1)

where ( is the roughness exponent. The values of ¢
reported in the literature all seem to be in the range 0.7
to 0.9 [4—11] for measurements with a resolution down to
the micron scale. A careful study by Bouchaud, Lapasset,
and Planés [7] of a slightly ductile aluminum alloy having
undergone a range of different heat treatments resulted
in a roughness exponent ¢ = 0.80 = 0.05 independent of
the heat treatment. This led the authors to propose that
the roughness exponent could be universal (independent
of the material for a range of materials). This study
was followed by that of Malgy er al. [8] using six
very different brittle materials. As in the Bouchaud
study, scaling was found over 2 orders of magnitude in
length scales, and the roughness exponent of all materials
involved turned out to be ¢ = 0.87 with a precision of
about 10%, consistent with the hypothesis of a universal
roughness exponent. The universality hypothesis has been
contested by Milman et al. who studied fractures on the
nanometer scale [12] (about 3 orders of magnitude smaller
than in the studies of Refs. [4—11]). These authors
found a roughness exponent that strongly depends on the
material. Other studies covering the same range of length
scales found the same wide range of exponents [13]. It
thus seems that, if there is a universality class for brittle

fracture roughness, these extremely small length scales are
outside its range of validity.

These measurements have all been done on three-
dimensional materials. Hansen, Hinrichson, and Roux
[14] studied the roughness of fractures in the two-
dimensional fuse model [15] with a range of very different
disorders and found the same roughness exponent { = 0.7
with a precision of about 10%. An experimental study
of breakdown in two-dimensional packings of collapsible
cylinders gave a result consistent with this exponent
[16]. However, the precision with which the roughness
exponent could be determined in this experiment was
fairly low. In addition, the mechanical behavior was not
elastic brittle. A careful study of rupture lines in Ref. [17]
gave a roughness exponent of 0.68 = 0.04. Here the
problem of out of plane deformations was not discussed,
although it is crucial in deciding the dimensionality of the
system. As paper cannot support a compressive stress,
even without buckling, the stress field is confined to a
very narrow zone at the crack tip. This contrasts with an
elastic medium where the crack field is long ranged.

The experimental works cited above are all on isotropic
materials with the possible exception of paper. Many
natural and designed materials have anisotropic mechani-
cal properties, e.g., due to structural reinforcements in
a preferred direction (notable examples are wood and
reinforced concrete). It is important in applications such
as construction to understand how fractures in these
materials are affected by the underlying morphology.

We report here a study of brittle fracture roughness
in a two-dimensional system where the elastic properties
are well established. We take care to probe the effect
of anisotropy of the material on the scaling of the
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fracture surfaces. Thus we are able to test the universality
conjecture in two dimensions for an anisotropic elastic
brittle material.

Wood was chosen because of its structural anisotropy
and because fractures generated between fibers give rise
to quasi-two-dimensional surfaces; i.e., they are almost
invariant in the axial direction. The presence of radially
running ray cells is the main qualitative feature giving the
anisotropy in the radial and tangential directions.

Seasonal variations cause a heterogeneous density in
wood. To ensure a relatively large amplitude in the
roughness of the fracture surfaces we selected speci-
mens having large growth rings from two commer-
cially available wood species, Malaysian nemesu (Shorea
Pauciflora) and Norwegian spruce (Picea Abies). The
nemesu specimens had a density (p) of 540 kg/m? (dry
weight/dry volume), a moisture content (x) of 3.0%
(moisture weight/dry weight), and growth rings approxi-
mately 3 cm wide. However, minor variations on a scale
of 4 mm were also visible. Typical values for the spruce
specimens were p = 330 kg/m3, u = 5.4%, and growth
rings were about 5 mm wide.

The samples were prepared by sawing cross sections, of
various lengths in the axial direction, from 2 in. planks.
Two methods of breaking were employed: bending and
stretching. Before bending, the samples were clamped
between a metal plate and a table. Fracture was generated
along an average tangential or radial direction by aligning
the growth ring tangent along or perpendicular to the
sample holder. Stretching was performed in a laboratory
tensile testing machine. A small notch was cut to control
crack initiation.

Evidently size, orientation, and linkage of structural el-
ements in wood are important in determining the valid-
ity of a scaling assumption. Under loading the cell wall
breaks, revealing structure even below cell size. How-
ever, a coarse graining at a larger length scale is due
to the orthogonal connection between tracheids and ves-
sels running axially and ray cells running radially. This
anisotropy makes the fracture surface deviate from a
quasi-two-dimensional surface.

Most tracheid cells in the nemesu samples were about
25 pm in diameter. Vessel elements were about an or-
der of magnitude larger. Rays interspersed groups of tra-
cheids 8-12 cells wide. This led us to introduce a typical
lower cutoff in the data around 250 um. Cleavage along
the rays was also important in flattening the radial frac-
ture surfaces. Amplitudes in the radial cracks were up to
1 mm, while the tangential cracks had peaks up to 3 mm.
The difference in morphology between tangential and ra-
dial fracture is clearly seen from the two profiles in Fig. 1.
Curvature of the growth rings was apparent in the spruce
samples which were broken 10—15 cm from the pitch. In
Table I we list details of the various samples studied.

We recorded the surfaces with a needle-arm profilome-
ter [8]. The samples, mounted on a translation stage, were
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FIG. 1. Surface profiles of nemesu samples. The top curve
shows a tangential fracture surface from data set A. Below is
a radial fracture from set E.

moved past the needle under step motor control. As the
needle moved up or down, a mirror on the axis of the arm
rotated. The position of a reflected laser beam was mea-
sured with a photodiode giving a voltage signal propor-
tional to the height of the surface. Thus a trace z = z(x)
was recorded. Surface profiles over a length of 2.56 cm
were measured using a step length of 12.5 um for test set
E (see Table I) and 25 um for all the other samples. The
setup was calibrated for a maximum peak of 4 mm. Verti-
cal resolution, estimated from the difference between two
successive scans along the same line, was about 5 um.

Analysis of the data was performed using three
very different methods: the first return probability
method [8], the power spectrum [3], and the bridge
method [18]. We subtracted off the drift in each trace
by transforming z(x) — z(x) — [z2(xmax) — 2Otmin)] X
(x - xmin)/(xmax - xmin), where xpin = ¥ = Xmax.

TABLE I. List of fracture samples analyzed. The samples are
classified by surface (tangential or radial), mode of fracture (S
for stretching or B for bending), and sample thickness. Unless
otherwise stated the samples are all nemesu wood. Roughness
exponents are calculated for each test set using the first return
probability, the power spectrum, and the bridge method.

Fracture Sample d First Power

test No. (mm) return spectrum Bridge
A Tan. § 7 6.1 0.67 0.63 0.63
B Rad. § 8 6.1 0.71 0.47 0.68
C Tan. B 5 6.5 0.60 0.67 0.72
D Rad. B 5 6.5 0.68 0.60 0.74
E Rad. B 5 6.5 0.74 0.69 0.69
F Tan. B 4 43 0.64 0.69 0.70
G Tan. B 4 7.7 0.67 0.70 0.70
H?® Tan. B 9 7.7 0.62 0.70 0.69

(tok 0.67 0.67 0.69

o 0.05 0.04 0.03
*Spruce.

®Average roughness exponent.
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The first return probability method consists in measur-
ing the probability that a height z appearing at position
x reappears for the first time at distance x + A. This
probability distribution R(A) follows a power law in A,

R(A) ~ A™C79/(L — A). (2)

We have here introduced the finite size correction
1/(L — A) which takes into account that any return
distance A must lie within the interval [0, L].

Figure 2 shows the first return probability distributions
for test sets A, B, and C. Excluding the region below
0.125 mm and the noise above 1.5 mm, we have made
linear least-squares fits guided by eye. The lower cutoff
is of the same order as determined earlier on physi-
cal grounds. The roughness exponents found with this
method are listed in Table I and the average is { =
0.67 = 0.05. All of the uncertainties reported in this paper
are statistical standard deviations. Without the correction
factor we obtain an average value which is about 4%
lower.

The second method used is to calculate the power
spectrum, that is, the Fourier transform of the correlation
function (z(x + Ax)z(x)). The power spectrum scales as

P(f) ~ f70720, 3)

Figure 3 shows the averaged power spectrum for test
sets A, B, and C. The linear least-squares fits were
generally made between log,, f = —1.4 and 1 (1/mm),
the latter corresponding to about half the physical cutoff
length. However, the spectrum for B is more curved
than the others; see Fig. 3. Here we fitted the range
between log,, f = —1 and 0.6. Most samples in set B
were very flat and this may have reduced the power in
the low frequency part significantly. In Table I we give
the roughness exponents determined from power spectra.
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FIG. 2. First return probability distributions R(A) for tests A,
B, and C. For clarity of presentation the data for B and C have
been shifted upward 2 and 4 units (on log scale), respectively.
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FIG. 3. Averaged power spectra, P( f) for tests A, B, and C.
The data for B and C have been shifted upward 2 and 3 units,
respectively.

Leaving out the exceptionally low value for B, we get an
average { = 0.67 = 0.04.

The bridge method [18] consists in cutting the fracture
trace into equal pieces of length X. The drift is subtracted
from each piece, and then the distance between the
maximum z and minimum z, Ap.x2, is recorded for pieces
of different lengths X. We then average over all pieces of
the same length. Ap.z scales as

Anaxz ~ X, 4)

A plot of this law for data sets A, B, and C is shown in
Fig. 4. The linear fits were made above the lower cutoff
length. Averaging the roughness exponents obtained with
this method gives { = 0.69 = 0.03.

Since large corrections to scaling seem to be unavoid-
able, we felt it important to measure the roughness ex-
ponent with very different methods. This counteracts,
at least partly, human bias in the analysis. The various
methods are sensitive to different properties of the data.
Both the first return method and the bridge method gave
exponents in good agreement for set B indicating that the
exceptional value from the power spectrum was a weak-
ness of this method. The average values from all the
methods are very close. As an estimate for the roughness
exponent we therefore average over the various methods
of analysis, woods, and fracture modes, except the power
spectrum for B, to find { = 0.68 = 0.04.

The absence of large fluctuations in Table I from
this value supports the notion of a universal roughness
exponent. Changing the thickness of a sample will change
the amplitude, but not the scaling exponent. Again, that
rather disparate morphologies as the radial and tangential
fractures, see Fig. 1, seem to have the same scaling
properties supports this hypothesis.

We have seen that a two-dimensional elastic brittle
material, viz. wood, has a fracture roughness exponent
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FIG. 4. Determination of the roughness exponent { from the
bridge method for data sets A, B, and C. The data for B have
been shifted 0.5 unit upward.

which is not sensitive to material species, fracture mode,
or anisotropy. Consistency with previously mentioned
studies [16,17] indicates that the simple two-dimensional
elastic-brittle fracture process that is partly involved in
these experiments controls the response of the systems.
Additional nonlinearity (buckling, friction, etc.) play a
minor role, which was not obvious initially.

It seems reasonable to assume that material properties
should affect both the morphology and scaling of fracture
surfaces. However, no clear understanding of what limits
the class of materials having the same fracture roughness
exponent has been reached. Attempts to correlate { with
mechanical properties, e.g., toughness, of the materials
investigated have not been conclusive (see Refs. [2,12]
and [19]).

We have not systematically varied toughness. But,
the two woods examined probe almost a factor of 2 in
density, the most significant parameter characterizing the
mechanical properties of wood. Therefore, a variation in
toughness was tested indirectly without any measurable
change in roughness exponent being detected. The same
argument holds for earlier studies of a broad range of
brittle and weakly ductile materials: By varying material,
toughness was also varied.

A remaining issue is to identify the bounds of the class
of systems having the same roughness exponent and the
correct way to parametrize it.
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