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Ground-State Properties of the Two-Dimensional Bose Coulomb Liquid
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We present results of a ground-state study, via the diffusion Monte Carlo method, of a two-
dimensional charged boson liquid. We observe three distinct behaviors in this system. At the lowest
densities a close-packed Wigner crystal forms. At r, = 12 the crystal melts into a noncondensed liquid
exhibiting algebraic off-diagonal long-range order; the single-particle density matrix decays as r "4.
Above a threshold density (rt & 8), the long-wavelength momentum distribution diverges as k'"'

although no condensate forms.

PACS numbers: 61.20.Ja, 67.40.Db

Thermal fluctuations are known to destroy long-range
order in one- and two-dimensional homogeneous systems
[1—3]. Pitaevskii and Stringari [4], by deriving a gen-
eralized uncertainty relation for non-Hermitian operators,
have elegantly demonstrated the absence of a condensate
even at zero temperature in interacting homogeneous 1D
Bose systems. When the f-sum rule [5] holds, an impor-
tant consequence of this relation is the inequality,
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involving the momentum distribution nj, , structure fac-
tor Sk, and condensate fraction no. Using this inequal-

ity we show that, for a system of bosons interacting
through a two-dimensional Coulomb pair potential, the
predominance of long-wavelength plasmons rules out the
existence of a condensate in the thermodynamic limit.
Campbell, considering the role of the plasmons, appar-
ently first suggested this model might possess no Bose
condensate [6]. Next, employing the diffusion Monte
Carlo method, we confirm the long-wavelength plas-
mon structure, explicitly calculate the single-particle den-

sity matrix, and locate the transition density for Wigner
crystallization.

The ground state of the 2D Bose Coulomb liquid
(2DBCL) is closely related to the bosonic representation
of the Laughlin wave function, used to study the fractional
quantum Hall effect [7]. In an approach analogous to that

introduced by Gaskell [8], Kane et al. [9] have shown that
Laughlin's wave function contains long wavelength cor-
relations appropriate to the quantum 2DBCL. Girvin and

MacDonald have shown that this wave function exhibits
algebraic long-range order [10], so the 2DBCL ground
state should also exhibit this behavior [9]. Although the

long distance physics of these systems is identical, the
short-range behavior is quite distinct. A key feature of
Laughlin's wave function is that the probability for two
particles to overlap vanishes, as is appropriate for cIassi-
cah 2D charges. In the 2DBCL, however, quantum me-

chanics blurs the Coulomb core, yielding a depressed but

finite probability for such a configuration.

(2)

where i,j are particle indices, a is a fixed reference length,
and the free parameter r, is defined by m. (r, a)2 —= II/N,
the inverse physical density. The unitless density is
therefore always ~ '. The 2D Coulomb liquid admits

plasma oscillations of frequency top = 2/r,
At sufficiently high density, the kinetic energy domi-

nates the soft-core potential, yielding a liquid ground
state, p, with condensate fraction 0 ~ np ~ I. As our
potential is velocity independent, the f-sum rule and

relation (1) hold. In an isotropic system, the momentum
distribution nq satisfies the normalization condition

l kdk
nj = nIc —1 no. (3)

k~o

Assuming plasmons are the dominant long-
wavelength excitations, the dynamic structure factor
is S(k 0, to) = A(k)6(to —co~). From the f-sum rule

and St, —= f„d Sco(k, to) we find

k-
(4'Sl;-0— -2r,. Mp

When electrons are immersed in a magnetic field, cy-
clotron oscillations suppress long-range charge density
Iluctuations. Pitaevskii and Stringari have applied Eq. (1)
to show that this suppression leads to increased fluctua-
tions in the boson field operators which in turn destroy
the Bose condensate [11]. In the sequel we show that
the plasmons are the relevant excitations in the zero field
2DBCL, suppressing long-wavelength density fluctuations
and destroying the condensate.

We consider the ground state of a periodic system
of N bosons each of charge +q in two dimensions
and embedded in a neutralizing background. The pairs
interact with a repulsive 2D Coulomb potential, —q~ lnr.
We emphasize that, unlike in a 2D electron system, this
is a true Coulomb interaction. That is Vk = 2m. /k2, the
solution to the 2D Poisson equation, V V(r) = —2rtB(r).
We work in reduced units: lengths are given in units of
r,.a, and energies in units of q, so the Hamiltonian is
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the notation R: r; + r specifies the configuration R =
[r&, . . . , r;, . . . , rN), with particle i displaced from r; to
r; + r. Brackets denote a statistical average over the
probability distribution P . In an isotropic system, n(r)
depends only on the magnitude r = ~r~. The bosonic
ground state wave function can be taken everywhere real
and non-negative, so one easily verifies n(r) ~ 0, n(0) =
1, and no = n(r o))) [12]. Existence of a condensate
thus implies n(r ))))) ) 0. We can think of n(r) as
the relative change in probability amplitude obtained
when a single particle is displaced from r; to r; + r,
averaged over likely system configurations. The repulsive
pair interaction favors configurations where particles are
uniformly spaced, with each surrounded by a correlation
"hole." Choosing one such configuration, R, we consider
the change in potential energy which results from a large
single-particle displacement, r = ~Q, where 0 is the
area of the system. The near-uniform distribution of
particles in the liquid implies the average potential felt
by the displaced particle is only that of the correlation
hole. The leading contribution is therefore the attractive
potential due to a charge of equal magnitude and opposite
sign located in the hole, so the energy change is of order
InQ. In the thermodynamic limit, this energy diverges,
so the wave function P(R: r; + r) and n(r ~ )x) must
vanish, and no condensate forms.

We have performed variational (VMC) and exact diffu-
sion Monte Carlo (DMC) simulations of this system in its
ground state. VMC calculates an observable (QUOI/) by
averaging O(R) over the probability distribution, P(R)~.
The trial wave function tk is expressed as a function of a
small number of parameters, which we vary to minimize
the energy, (PIPE ~))/I) DMC sampl. es the mixed distribu-
tion, t)1(R)$(R), where P is the true ground state, by treat-
ing the Schrodinger equation as a diffusion equation with
a source term, V(R). The ground state energy is computed
exactly in this scheme, while other properties are obtained
using the "mixed" estimator, (P[O[$).

The details of our calculation are largely identical to
those described in Ref. [13]. One important difference,
however, is the addition of a long-ranged interaction. We
treat the resulting periodic potential using Ewald sums,
according to the prescription of Smith [14]. We do not
consider dipole interactions with the external medium, so

From Eqs. (1), (3), and (4), the assumption of a conden-
sate then leads to a k divergence in ni, at long wave-

lengths and the immediate conclusion np = 0.
We can understand the disappearance of the condensate

by considering the Fourier transform of the momentum
distribution, the single-particle density matrix,

n)r) = f dRt/i)R: r; + r)tP(R)

with u, a short-ranged correlation factor, u a variational

parameter, uI, a long-ranged factor, and the Fourier
components of the density pq = g e'"'" . We use a short-

ranged correlation of the form

2 2

u, (r) = —r lnr ——+ 1 eS r r2

4 2

which satisfies the cusp condition imposed by the diverg-
ing interaction for vanishing pair separations. The choice
of cutoff parameter y = 3 gave good results.

For the long-range correlation, we invoke the random
phase approximation (RPA), which neglects three-phonon
terms, to determine an optimal trial function [8,17]. We
do not make the RPA in our calculation, but only use it
to guide our choice of trial wave function, which controls
the efficiency of the DMC calculation. Minimizing the
RPA energy with respect to u&, we find
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which, at large separations, gives a correlation propor-
tional to the potential, namely —(r, /2) ln r. An equivalent
result may also be obtained through the paired-phonon
analysis [18] and the single mode approximation [9]. The
Gaussian cutoff in uI, is introduced to limit its effects to
long-range correlations, where the RPA is valid. This
correlation explicitly puts long-wavelength plasmon struc-
ture in the trial wave function, yielding Sz o = k /2r,
Should the true ground-state structure differ, DMC calcu-
lations will reveal this discrepancy at small k. Figure 1

shows variational and DMC structure factors for the liquid
at r, = 5. The curve k2/2r, is also plotted to indicate the
plasmon structure expected from Eq. (4). The agreement
at small k is excellent. Further, if we perturb uq, DMC
restores the behavior k2/2r„confirming the dominance of
plasmon modes at small k.

To efficiently compute the single-particle density ma-
trix n(r) we use a method based on that of McMillan
[19]. During the normal course of a Monte Carlo simu-
lation, we sample configurations R from the distribution
$2(R). Periodically, we pick a point, x, in the box at
random. We treat this point as a hypothetical target po-
sition for each particle in turn, yielding contributions to

our simulations correspond to the limit of a charged liquid
embedded in a 2D conductor.

The ground-state wave function of a system of inter-

acting bosons is often well described by the Jastrow pair-
product form [15,16], which we write in the form

—lntfj(R) = U(R) = guu, (r;, ) + guqpqp q, (7)
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FIG. 1. Structure factors from the variational (VMC) and
diffusion Monte Carlo (DMC) calculations at r, = 5. The solid
curve indicates the low momentum plasmon structure.

n(r) at N different displacements, r = ~x —r;~. Repeat-
ing this process throughout the simulation, we perform
the required average over {{12 in VMC and P@ in DMC.
The usual approach, according to Eqs. (5) and (7), in-

volves an evaluation of the change in U(R) resulting
from a displacement of a particle and alI its periodic im-

ages. Because the logarithmic potential is long ranged,
we instead compute the change in U(R) when a part-
icle moves with its images fixed. In this case we replace
b, (R, r;, r) —= U(R) —U(R: r; + r) with

6' (R, r„r) = b, (R, r;, r) + lim ui (r) —
u~ (r )

r 0

+ ui,
e'"' — l .

k@0

with x a random variable. If x is normally distributed, the

expansion terminates at second order. We also note the

identity

~
-za(e „.) (l(~:" + ~~'

{{1(R)'-
{13)

Because 5(R, r;, r) is the sum of )V —1 weakly cor-
related, bounded functions, the central limit theorem
allows us to assume it is, to a good approximation, nor-

mally distributed. The functions are bounded because the
Coulomb interaction has a soft core. With this assump-
tion, Eqs. (12) and (13) yield

([A(R, r;, r) —(A(R, r;, r))] ) = (b, (R, r;, r)). (14)—

where ul(r) is the Fourier transform of uk. The correction
(b, ' —5) vanishes for r = 0 and in the thermodynamic
limit, as it must.

From Eq. (9), the long-range correlation factor is pro-
portional to the interaction and therefore logarithmic
in r. At large separations, u&(r) dominates Eq. (11)
with the result b, '(R, r;, r ~ ~) = (r, /2) lnr. To analyze
the long-range behavior of n(r), we use the cumulant
expansion [20],

ln(e'") = (x) + 2 ((x —(x)) ) +, {12)

Equations (5), {12),and (14) then give

ln [n(r)] = —,(A~(R, r;, r)).

We expect deviation from this behavior only near the
crystallization density, where correlations become large.
Finally, we obtain

it{r ~) ~ exp( —, (3 —{R,r, . r))j = r

0.;(R) = Oi(R)

Oo
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FIG. 2. The single-particle density matrix, n(r), computed
from diffusion Monte Carlo calculations of 154 particles. At
each density, r„ the upper curve results from the standard
estimator, while our modified estimator gives the lower result
[see Eq. (11)]. Inset: n(r) plotted Iinearly.

the expected algebraic long-range order. The results of our
calculations are plotted in Fig. 2, where the asymptotic
behavior of n(r) follows Eq. (16). The upper curves in

each pair show the results of the usual form, n(r) =-

(e ~{ ""'), which curl up at the box edge due to the
periodic nature of the wave function. For the lower
curves, we have used Eq. (11) to eliminate these surface
effects. Inspection of Eq. (16) reveals that ni, diverges as
k'" "~, when r,. ~ 8. In the thermodynamic limit, the
occupation of the zero momentum state diverges for these
densities. It increases more slowly than the particle count,
however, so the condensate fraction still vanishes.

In quantum solids there is also no condensate, so
one might wonder at what density the charged particles
prefer to localize rather than form a noncondensed liquid.
Clearly, at very low density the liquid must freeze into
a 2D Wigner crystal to minimize the dominant potential
energy. We have computed the crystallization density by
comparing energies for the liquid with those of a solid.
We choose the triangular lattice, which has lower static
energy than the square lattice. This choice also enables
comparison with crystallization in the 2D Yukawa Bose
liquid [13], a model for Ilux-lattice formation in high-
temperature superconductors [21].

The trial wave function for a solid, tj'I„ is obtained from
the liquid wave function by adding a Nosanow spring
term [22], which effectively ties each particle to a lattice
site, Z;:
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with c a variational parameter. Although not symmetric
under particle exchange, this type of wave function gives
excellent energies for many simple solids since exchange
energies in quantum crystals are small. Because this wave

function is typically better than the liquid wave function

[13,23], a variational study would be ill suited to com-

paring liquid and solid energies. Use of DMC is hence
important to eliminate this variational bias. For a system
with long-range interactions in periodic boundary condi-
tions, each particle forms a rectangular lattice with its own

images, so one out of N interactions is that appropriate to
the static lattice rather than the bulk liquid. Finite-size
effects in the crystal are substantially smaller and should

also be a I/N correction. Consequently, we assume a
simple form for the finite-size scaling, EN = E + g/N.
The ground-state energies, E, listed in Table I, indicate
crystallization occurs near r, = 12. Should a different
scaling law hold, our estimate of the crystallization den-

sity should not vary by more than = ~1. The short-range
limit of a Yukawa potential is a Coulomb interaction,

Kp(r 0) = —lnr, so the crystallization density should

equal that estimated by extrapolating calculations of the
high-density Yukawa system [13],r, = 14.1. Our method
is not sensitive to the order of the phase transition, but an

estimate of the transition width in the Yukawa liquid sug-

gests it is weakly first order. Lindemann's ratio at melting
is about 0.24 ~ 0.01 in both systems.

In conclusion, we have found three different behaviors
of the ground state of the 2D quantum Coulomb Bose
liquid as a function of density. At small r, ( 8 the mo-
mentum distribution diverges as k~" ~~ . At larger r, it
is bounded, but at r, = 12 the system freezes. Although,
in the thermodynamic limit, the ground state of this sys-
tem is not condensed, superfluidity is nonetheless possi-
ble. We note that, because the plasmons are massive,
this system has a finite critical superfluid velocity, in the
sense of Landau and Lifshitz [24]. Path-integral calcu-
lations at finite temperature, or imaginary time diffusion

5.0
10.0
14.1

—0.1540(4)
—0.2500(2)
—0.2818(4)

Liquid

0.87
1.09
1.15

10.0
14.1
20.0

Crystal
—0.249 33(6)
—0.2840(3)
—0.3081(1)

0.83
0.85
1.01

F 1
1.5
1.5

TABLE I. Extrapolated ground state energies calculated with

DMC. Numbers in parentheses are estimated errors in the last
decimal place. Calculations were performed for systems of 16
to 154 particles; a and c are optimized variational parameters
for a system of 16 particles.

E /N

constant studies in DMC, for example, could determine

the superfluid density of this system. In the path-integral

framework, where particles are mapped onto polymerlike

rings, Bose condensation implies a nonvanishing probabil-

ity for the two ends of a "cut" ring to wander arbitrarily

far apart. Superfluidity, on the other hand, is simply ex-

pressed in terms of macroscopic particle exchange across
the simulation cell. If the 2D Coulomb system is indeed

superfluid, it may provide an ideal model system in which

to study the differences between superfluidity and Bose
condensation.

All of the calculations were performed on Cray,
Sun, and HP computers at the National Center for
Supercomputing Applications at the University of Illinois,
Urbana. This work was supported by the National
Science Foundation under Grant No. NSF-DMR 91-
17822.
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