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Propagation of Light Beams in Photorefractive Media: Fanning, Self-Bending, and
Formation of Self-Pumped Four-Wave-Mixing Phase Conjugation Geometries
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We investigate propagation of light beams in photorefractive media by direct numerical simulation.
The two dimensional model is based on solution of nonlinear material equations and parabolic equations
for the electromagnetic field. We show that this set of equations describes the wealth of complicated
spatial structures observed in these media. We present results on fanning of a single beam and on
formation of various four-wave-mixing geometries including self-conjugation of a light beam via total
internal reflection, mutual phase conjugation, and self-bending of two counterpropagating beams.

PACS numbers: 42.65.Hw, 42.50.Ne
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Here ND, Xo, N~, and n„are the density of donors, ion-
ized donors, acceptors, and electrons, respectively, E is
the amplitude of the static electric field, e the electron

Propagation of laser 1ight in a photorefractive medium
is accompanied by a series of dramatic and fascinating
changes of its spatial structure. Among these are the
asymmetric light-induced stimulated scattering (fanning

[1]) and formation of spatial distributions of the electro-
magnetic fields resulting in self-pumped phase conjuga-
tion and mutual conjugation of light beams incident on a
photorefractive crystal [2—5]. A considerable effort went
into development of various theoretical models describing
these phenomena (see, e.g. , reviews [6,7] and references
therein). Previous analyses resulted in insight into many
features of the nonlinear interaction of light with photore-
fractive media. But due to the complexity of the processes
under investigation previous work frequently relied on
ad hoc assumptions about the spatial structure of the elec-
tromagnetic radiation inside the medium. The aim of
the present paper is to investigate formation of complex
spatial structures of the electromagnetic fields in a pho-
torefractive medium numerically, from first principles,
making as few approximations as possible. We specify
only the input amplitude distributions of the light beams
incident on the medium. Their evolution inside the

medium is governed by diffraction and material nonlin-

earity. The resultant distribution of the fields inside the

crystal, depending on mutual orientation of the beam and

the crystal faces, corresponds to the formation of one or
the other spatial structures of the fields responsible for in-

coherent scattering or above mentioned phase conjugation
or mutual conjugation geometries.

We base our analysis of the photorefractive material
response on the set of equations [8]:

—No = sl(N„—No) —gn, ,N~, . (la)
dt

chargeet, he static dielectric constant, g the recombina-
tion constant, p, the mobility, ~& Boltzmann's constant,
T the temperature, s the photoexcitation coefficient, and I
the intensity of electromagnetic radiation plus equivalent
dark intensity connected with thermal excitation of charge
carriers. Assume that all functions in Eqs. (1) predomi-
nantly change along the y direction, and so all differen-
tial operators are replaced by a partial derivative along
this direction. In steady state (8/rJt = 0) and under the

standard assumptions of ND && N&, and fast carrier re-

combination, Eqs. (1) may be reduced to one equation
for the normalized amplitude of the static electric field
v = E/E, where E = traTkD/e —= eN&/eko and where

k» = (e' NA/trBTe-) is the characteristic Debye wave&/2

number:
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The equations governing propagation of the optical fields
have the form

4'3a)

i
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where k is the wave number of electromagnetic radia-

tion inside the medium and A, and Ab are forward
and backward propagating electromagnetic fields, respec-
tively. Equations (3) are written in the paraxial approxi-
mation; i.e., the angles of propagation of all beams with

respect to the x axis are assumed to be small as corn-

pared to unity. The same paraxial approximation ensures
that all functions in Eqs. (1) predominantly change along
the y direction. Values of the appropriate components
of the electro-optic tensor that give the relation between
the static electric field v and the nonlinear refractive in-

dex change are lumped into the nonlinearity constant y().
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The angular dependence of the electro-optic tensor is ne-

glected as compared to that given by Eq. (2). The inten-

sity of the electromagnetic radiation I in Eq. (2) is equal
to the sum of the beam intensities, plus an equivalent dark
intensity connected with dark conductivity or (possible)
incoherent erasure intensity: I = (Ay( + (Ab( + I„.In
the following we shall use, instead of the Debye wave
number kD, the Debye angle 0D, determined by the re-
lation eo = ko/k. If the medium is illuminated by two

plane waves A& = Ai + Az ((At( « )Aq(), propagating
at an angle 8 to each other, the weak wave A1 grows ex-
ponentially in space (At —exp[y(e)x]) from its boundary
value with the growth rate [8]:

2(e/e )
1+ (e/e, )'

The angle HD is thus the angle between plane wave pump
and signal beams corresponding to the maximum coupling
between them, and yp is the value of this coupling.
The boundary conditions for the system of Eqs. (2)
and (3) correspond to specification of input amplitude
distributions of the forward and backward propagating
beams A~;„(y),Ab;„(y). The system of Eqs. (2) and (3)
is the same as that used in recent papers [9,10], but
we concentrate here on different topics. Equations (3)
were solved using a finite difference Crank-Nicholson

type scheme [11]. Equation (2) was solved by relaxation
methods. Solution of Eqs. (2) and (3) is an initial-
value problem, and is less computationally demanding,
when considering fanning of a single beam. These
calculations were carried out for values of the parameters
corresponding to experimental ones. The presence of
feedback in the case of formation of phase conjugation
geometries makes it a boundary-value problem, requiring
larger resources. These calculations were carried out
with downscaled values of the experimental parameters
(diameters of the beams and size of the computation
region).

We found that efficient development of all the above
mentioned spatial structures of the electromagnetic field
requires, besides nonlinearity, the presence of a suffi-
ciently large background of spatially broadband radiation
(noise) that serves as seeds for generating these structures.
These seeds may be due to surface and volume scattering
in the nonlinear medium or they may be present in the in-

put beam if its spatial spectrum is broad enough. We do
not consider volume scattering in this paper, and all back-
ground seeds are added to the input beams.

Figure 1(a) shows a typical picture of asymmetric inco-
herent stimulated photorefractive scattering (fanning) of a
single light beam. The sizes of the computation region
are I = 5 mm, l~ = 2 mm along coordinates x and y, re-
spectively, and the beam propagates at an angle 0 = —6
to the x axis. The number of transverse points used in the
calculations was 12000 (corresponding to =72 ) and the
number of longitudina1 steps was 3000. The input and
the output intensity distributions of the beam are shown
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FIG. 1. Fanning of a beam in a photorefractive medium:
(a) distribution of light intensity inside the crystal for yol„=
12, (b) intensity profiles of the input (dashed) and the output
(solid) radiation.

in Fig. 1(b). The beam is a Gaussian with diameter d =
0.3 mm with superimposed noise. The power spectrum of
this noise has a Gaussian envelope with F%HM = 12 .
The ratio of maximum spectral intensity of the noise to
that of the Gaussian kernel is about 10 4. The total power
in the low-intensity noise pedestal is about 0.01 of that

of the Gaussian kernel. The nonlinearity ypl, = 12 and

eD = 8'. Figure 1(a) demonstrates that the beam breaks
down into a fan of narrow filaments. This picture is in

very good agreement with experimental observations.
Figure 2 shows the spatial structure of the fields cor-

responding to the geometry of a total internal reflection
phase conjugator [2]. As is shown in Ref. [2] the incident
beam is aligned in such a way that its fanning is directed
towards a corner of the crystal that acts as a retroreflec-
tor. The reflected fanning couples nonlinearly with the

input beam, finally forming a loop structure. The result-

ing backpropagating beam is a phase conjugate replica of
the incident beam. The input beam for these calculations
is similar to that used in the calculations of fanning. It has
a Gaussian kernel with superimposed random modulation.
The power spectrum of this modulation has a Gaussian en-

velope with FWHM = 9' and with relative peak intensity
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=2 X 10 -'. The beam has diameter d = 0.06 mm and
propagates at an angle 0 = 1 to the x axis. The
size of the computation region is I,. = 1 mm I . =
0.2 mm, yol, = 13, and 0~ = 8 . Calculations were car-
ried out on a 500 (along x ) && 1000 (along y) grid.
Reflection from crystal faces was described phenomeno-
logically. The radiation incident at the back crystal face
was decomposed into Fourier harmonics. Those incident
at angles less than 10 were transmitted; the rest were to-
tally reflected. The side faces are ideally reflecting. The
input (dashed) and the output (solid) intensity distribu-
tions of the beam are shown in Fig. 2(b), which demon-
strates reproduction of the beam input structure and shows
that the output beam is a reasonable phase conjugate
replica of the input one. The nonlinear reflectivity R and
the conjugation fidelity H (as defined in [10]) for Fig. 2
are equal to R = 0.87 and 0 = 0.85.

Figure 3 demonstrates phase conjugation of two almost
counterpropagating light beams [3,4]. Figure 3(a) shows
the rhomboid-shaped beam overlap region in the absence
of nonlinearity, Fig. 3(b) corresponds to yol„=11, and
Fig. 3(c) to yol, = 15. The nonlinearity causes the beams
to form a distributed region of shared refractive index
gratings, and to bend smoothly into each other, producing
backpropagating phase conjugate beams. The effect of
smooth self-bending is especially striking when compared

(a)

(b)

(c)

jul

~ o

)

(a)

FIG. 3. Structure of fields corresponding to mutual phase
conjugation and bending of two light beams: (a) distribution
of light intensity in the crystal for yo/, = 0, (b) the same for
yo/, = 11, and (c) the same for y„/, = 15.
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FIG. 2. Structure of fields in the geometry of a total internal
reliection phase conjugate mirror: (a) distribution of light
intensity inside the crystal and (b) input (dashed) and output
(solid) intensity profiles of the beam.
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to what happens to a single beam [Fig. 1(a)]. Figure 4
gives intensity distributions of the input and output
radiation at one of the faces of the crystal (the fields

at the second face look very similar), for yol, = 11

[(a)] and 15 [(b)]. Dashed curves are the input fields
and solid curves the output ones. The intensity hump
on the left sides of Figs. 4(a) and 4(b) corresponds
to the part of the incident beams that passed through
the nonlinear medium without interaction. Its relative
magnitude diminishes with the increase of nonlinearity.
The overlapping parts of the dashed and the solid curves
on the right sides of Figs. 4(a) and 4(b) correspond to
generation of phase conjugate radiation. Notice the spatial
shift of the phase conjugate beams with respect to the

counterpropagating input beams. The shift is clearly seen
in Fig. 4(a), corresponding to a lower nonlinearity, and

is almost nonexistent in Fig. 4(b). Its physical origin was
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FIG. 5. Structure of the fields corresponding to mutual phase
conjugation and bending of two light beams coupled via a
retlecting crystal face (the bird wing geometry).
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FIG. 4. Input and output intensity distributions of the beams
at the left face of the crystal for the geometry of Fig. 3 for
(a) yol„=11 and (b) yol„=15.

discussed in [7]. The nonlinear refiectivities and conjuga-
tion fidelities are equal to R = 0.6, H = 0.5 for Figs. 3(b)
[4(a)] and R = 0.9, H = 0.9 for Figs. 3(c) [4(b)]. The
size of the computation region for Figs. 3 and 4 is 1.2
mm X 0.3 mm (600 X 1250 points); the beams have the
same powers and diameters d = 0.08 mm and intersect in
the medium at an angle 0 = 8'. The spatial spectrum of
the input fields is similar to that used in the previously
discussed calculations and, finally, HD = 8'.

Figure 5 shows two equal power beams with the same
diameter d = 0.06 mm intersecting in a photorefractive
medium at an angle 8 = 6'. The rhomboid-shaped beam
overlap region in the absence of nonlinearity lies just
above the side face of the crystal that is ideally reflecting.
The direction of fanning is toward the face. It is the
closeness of this reflecting face to the beam overlap region
that makes the situation different from that of Figs. 3
and 4. The beams fan toward the face, and the fanning
of each beam after having been reflected from the face

intersects the other. The result is mutual self-bending and

phase conjugation of the beams, with the formation of a
very characteristic bird wing structure [5]. The size of
the computation region for this picture is 1 mm X 0.12
mm (500 && 1000 points), yol„=15, and 8& = 8'. The
nonlinear reOectivities and the conjugation fidelities are

equal to about 0.8 and 0.5, respectively.
In conclusion, we investigated numerically the two

dimensional propagation of a light beam in a nonlin-

ear photorefractive medium by direct "first principles"
numerical simulation. The two dimensional model was
based on solution of nonlinear material equations and

parabolic equations for electromagnetic radiation. We
have demonstrated for the first time how this model, in

a unified way, describes the formation of complex spatial
structures when light beams propagate inside these media.
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