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Statistics of Natural Images: Scaling in the Woods
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We study the statistics of an ensemble of images taken in the woods. Distributions of local
quantities such as contrast are scale invariant and have nearly exponential tails. Power spectra
exhibit scaling with a nontrivial exponent. These data limit the information content of natural
images and point to the importance of gain-control strategies in visual processing.
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Efficient signal processing systems take advantage of
statistical structure in their input signals, both to reduce
the effects of noise and to generate compact representa-
tions of seemingly complex data. Since Barlow's discus-
sion in 1959 [1],many authors have explored the possibil-
ity that biological vision systems are designed to exploit
the statistics of natural images [2]. It is diKcult, how-
ever, to compare these ideas with experiment, because
we know relatively little about the statistics of natural
scenes. The fact that objects can appear on all possible
angular scales leads to the hypothesis that natural im-
ages should exhibit some form of scaling or self-similarity
[3). Here we analyze an ensemble of images taken in the
woods of Hacklebarney State Park in central New Jersey.
These provide strong evidence for nontrivial scaling in the
sense of statistical mechanics, and we discuss some im-
plications of these results for our understanding of early
visual processing.

Imagine that we have taken a set of photographs which
are sampled into pixels of angular dimension lo x lo. The
scaling hypothesis states that the statistical structure of
our ensemble of photographs is independent of the pixel
size lo. In studying images we can test for scaling explic-
itly by constructing block pixels. In Fig. 1(a) we show
an example from our ensemble of natural images. We de-
fine the contrast in each pixel to be P(x) = In[I(x)/Io],
where Io is chosen for each image so that the average con-
trast is zero; note that P is invariant to overall changes
in brightness. To characterize the statistical structure of
the images we examine the histogram of contrasts in each
pixel, P(P), shown in Fig. 1(b). The distribution of con-
trasts is far from Gaussian, with nearly exponential tails,
We now construct 2 x 2 block pixels, renormalize P so that
the root-mean-square contrast is fixed, and look again at
the histogram of contrasts in each pixel; the distribution
is the same. We continue the blocking procedure, and in
each case the distribution of (renormalized) contrast is
the same.

The non-Gaussian character of the natural image en-
semble can also be seen in the probability distribution for
contrast gradients, [V'P[, in Fig. 1(c). Scaling is observed
over a range of nearly 10 in probability. If P[P(x)] were
Gaussian, the distribution of ~V'P~ would be Rayleigh,

and in Fig. 1(c) we see that both small and large gradi-
ents are more likely than expected in a Gaussian world.
Qualitatively, regions of small gradient are large and con-
nected, interrupted by smaller regions of high gradient.
This is similar to turbulent Huid How, where images of
the How (or of the temperature in thermally driven turbu-
lence) show a concentration of large gradients into small
regions. These flows also exhibit strongly non-Gaussian
probability distributions, as observed here for natural im-
ages [5].

The link between non-Gaussian distributions and the
inhomogeneity of gradients can be seen by defining a lo-
cal variance in the image, for example, the variance of P
values in an N x N block surrounding each point (Fig.
2). The distribution of local variance has a long tail,
but if we normalize the deviation of each point from the
local (N x N block) mean by the local standard devi-
ation, then the histogram of pixel values has Gaussian
tails (for N = 5), and the distribution of gradients in

the "variance-normalized" images is almost exactly the
Rayleigh distribution. Seemingly featureless regions of
the original image reveal their textures in the variance-
normalized images, while maps of the local variance re-
veal "ghosts" of objects.

We have found no local linear transformation on the
images which produce Gaussian distributions. In partic-
ular, biologically motivated center-surround filtering [6]
produces pixel histograms which are even more precisely
exponential. Thus while filtering can reduce redundancy
by decorrelating neighboring pixels [1] (analogous to the
"q-u redundancy in English), these operations cannot re-

move the redundancy associated with the non-Gaussian
distributions of local quantities. In contrast, the nonlin-
ear operation of variance normalization returns a mod-
ified image in which local quantities have Gaussian dis-
tributions, and hence maximum entropy given their dy-
namic range.

Another way of looking for scale invariance is to mea-
sure the power spectrum

Sg (k) = d y exp [ik . y] (y(x) P(x + y) ),

where (
.) denotes an average over images. We recall
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that the power spectrum is a useful characterization only

for ensembles which are translation invariant, so that the

expectation value (P(x)P(x + y)) is independent of the

central position x. This excludes environments where

the horizon is prominent, and we know that organisms

which live in such environments have eyes which sample

the world in a strongly inhomogeneous manner [7].
The power spectrum, as shown in Fig. 3(a), is fit well

by S4, (k) = A/k " over a range of eight octaves in

spatial frequency k, which quantifies our intuition that
structures occur on all possible scales. In a world with

g = 0 each octave of spatial frequency contains the same

amount of power [3]; with rl ) 0 there is proportionately
more power in the short distance details. We find that
for images in the woods rl = 0.19 + 0.01.

The power spectrum by itself does not tell us very

much about the statistics of natural images; rather it
should be viewed as confirming the scaling which we ob-

served in the contrast histograms. A Gaussian ensemble

of images with the observed S4, (k) is the maximum en-

tropy ensemble consistent with the power spectrum of
natural images, and hence a visual system which views

this Gaussian ensemble collects more visual information

than one which views the real world [8].
We imagine that an animal views the world through a

lattice of receptor cells, each of which has independent

contrast noise of variance o.2, and that the optics of the

eye consist of an ideal lens with a cutofF at spatial fre-

quency k, which matches the Nyquist frequency of the
receptor lattice. Then by using the maximum entropy

property of the Gaussian distribution we can show [9]
that the information which the receptor array provides

about a single snapshot is

~N G d~ k (1 —k/k, )
s

I &
2 (

2log2 1+ ~ k, S4,(k), (2)

where N is the total number of receptors and G is a geo-
metrical factor; G = 7r/2 for a square lattice. Because of
scale invariance, the noise level o, the Nyquist frequency
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FIG. 1. An example (a) of the images [4] in our ensemble,
which consists of 45 images at focal length 15 mm and 25
images at 80 mm. We make no attempt to correct for limi-

tations of the optics or camera noise, which are noticeable in
the power spectra [Fig. 3(a)]. Probability distributions are
shown only for the data at 15 mm. (b) Distribution of con-
trast P, averaged over N x N pixel regions and normalized
to unit variance. We see that distributions are identical for
N = 1, 2, 4, . . . ,32, with nearly exponential tails. (c) Distri-
bution of magnitudes of the gradient, ] VQ ]. We define the
gradient in discrete images simply by computing differences
among neighboring pixels; to study scaling we first average
N x N, then apply the same procedure and normalize to unit
mean. The tail of the distribution is quite precisely expo-
nential, and contrasts strongly with the Rayleigh distribution
expected for a Gaussian world.
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k„and the strength of the power spectrum A can be combined into the signal-to-noise ratio (SNR) in a single receptor

cell,

1 d k
RsNR = —

z z (1 —k/k, ) Sy(k),

(4)

Figure 3(b) shows the available information I over the
range of SNRs relevant to the primate fovea. We see
that the information is of order 1 bit per receptor cell,
or less since we have computed an upper bound. This is
less than half what would be available from an array of
independent cells, corresponding to a large redundancy.

Although it is well known that intensity histograms
of individual images are non-Gaussian, and that indi-
vidual scenes have roughly I/kz power spectra, there is
also tremendous variability in these data from image to
image [10]. We find, in contrast, that an ensemble of
natural scenes has highly robust statistical features. The
observation of precisely scale-invariant exponential tails
in the distribution of contrast gradients seems especially
significant. Scale-invariant correlations strongly limit the
amount of information available in a single scene, while
recent measurements indicate that sensory neurons can
transmit much more information than previously thought
[11]. Together these observations suggest that the op-
tic nerve may be able to transmit all of the information
provided by the photoreceptor array. Variance normal-
ization seems crucial to an eEcient representation of im-

age data, and there may be a connection between vari-
ance normalization as defined here and the various types
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of contrast gain control observed throughout the visual
pathways [12].
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FIG. 2. The probability distribution of gradients ] 7'@(x)
[

in the variance-normalized images, superposed with the
Rayleigh distribution expected if P[g(x)] is Gaussian. At
each pixel x we define the local mean g~(x) and local vari-
ance cr~(x) of the contrast values in the N x N pixels with
x at the center. The variance-normalized image maps the
deviation of P(x) from the local mean in units of the local
standard deviation, that is, @(x) = [P(x) —PN(x)]/op/(x).

FIG. 3. Power spectra (a) are computed by Fourier trans-
forming each image, taking the absolute square of each Fourier
component, then averaging over the ensemble; spectra are av-

eraged also over orientation, so that there is just one spatial
frequency variable k. Overlapping data correspond to im-

ages collected at difFerent focal lengths. The fitted line is

Sp(k) = A/k ~ with ri = 0.19 6 0.01 and A = 6.47 x 10
(deg)

' . Information per receptor cell (b) is bounded by Eq.
(4). The range of signal-to-noise ratios shown corresponds to
our best estimates for cells in primate fovea [13].
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