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Semiclassical Criterion for Scars in Wave Functions of Chaotic Systems
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A semiclassical criterion for the existence of scars, formulated in terms of a finite number of'

classical periodic orbits, is shown to be useful in order to predict scarring of specific wave functions
of chaotic systems, and to partly disentangle their structure. This is demonstrated by a numerical

study of wave functions of a chaotic billiard that are of suKciently high energy to be considered
semiclassical.

PACS numbers: 05.45.+b, 03.65.Sq

One of the most striking ways in which the underlying
classical dynamics of a chaotic system presents itself in
the corresponding quantum behavior is the "scar" phe-
nomenon. One could expect that highly excited states
of chaotic systems correspond to Wigner functions which
are homogeneous over the energy shell [1]. This picture is

also supported by theorems of Shnirelman [2] and Colin
de Verdiere [3] which state that in the semiclassical limit
the expectation value of an operator is almost always
the microcanonical average of the classical function cor-
responding to the operator. However, Heller [4] found
that wave functions of the stadium billiard were often
strongly peaked near unstable periodic orbits. This was
confirmed later on and extended to other systems such
as presented in [5,6] and the references therein. More-
over, scars were directly detected in experiments on mi-

crowave cavities [7], and indirectly for hydrogen atoms in

microwave fields [8]. Recently, it was argued that fiuc-

tuations in the magnetic response of mesoscopic systems
may also be associated with scars [9]. In this Letter the
"scar" phenomenon is quantified. For this purpose the
scar weight is introduced and expressed in terms of clas-

sical periodic orbits. By calculating the scar weights one
is able to predict which wave functions are scarred on the
basis of purely classical information.

The natural framework for the investigation of scars is

clearly the semiclassical theory. Of central importance in

this theory is Gutzwiller's trace formula which expresses
the density of states of a chaotic system in terms of a
sum over its classical periodic orbits [10]. The problem
is that this sum is not absolutely convergent for any real

energy. Considerable progress towards the resolution of
this difBculty has been made by introducing the spec-
tral determinant, A(E), whose zeros coincide with the
energy spectrum. In the semiclassical approximation it

is expressed as a sum over pseudo-orbits which are lin-

ear combinations of the periodic orbits. This sum suKers

from the same divergence problems as the sum for the
density of states. However, several resummation meth-
ods show that it is effectively truncated after a Finite

number of pseudo-orbits [11,12]. The leading term of the
formula obtained by Berry and Keating [12] is

8„—vr ~z N(E)
Z(E) =Re) c„e' t l+~ "Erfc

B(K, 5, E)~ah,

where p, , which stands for a set of repetition numbers

(r„)),labels the pseudo-orbits; 8„is the pseudo-orbit ac-

tion, 8„=P„r„S„,where S„is the pth primitive orbit

action, while c„arethe pseudo-orbits amplitudes, and

N(E) is the mean level staircase. The complementary
error function term in this formula e8'ectively truncates
the sum to orbits with period smaller than half of the

Heisenberg time. The width of the truncation region is

determined by B(K, h, E) = K2 + i
& & &1,N(E), where

K is a free Bne tuning parameter.
Developing a semiclassical theory for wave functions

of chaotic systems is a somewhat more delicate problem.

It was 6rst analyzed in the framework of periodic or-

bit theory by Bogomolny in configuration space [13], and

later on by Berry in phase space [14]. However, in order

to obtain convergent sums they had to introduce smear-

ing over some energy interval. Recently, a semiclassical

resummed formula for the signer functions of chaotic

systems was derived [15] with the help of the method of

[12].
For systems with 2 degrees of freedom, the semiclassi-

cal expression for the Wigner function corresponding to
the eigenstate Q is [15]

(2)

Here E~ is the corresponding eigenenergy and 6'(E) =
&&~

l. The function A(x, E) [Eq. (3.8) in [15]] accounts for

an Airy fringes pattern that is encountered upon moving the phase space point x = (q, p) perpendicular to the energy

surface E = 'R(x), where 'H is the Hamiltonian. The term in the curly brackets consists of a constant term which

is proportional to the function A, (E) that is equal to the imaginary part of the sum on the right-hand side (RHS)
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of (1), and contributions from periodic orbits. The function 6(P ")(E) is associated with the primitive orbit p. It is

expressed as a sum over pseudo-orbits,

S„p—vr ~~N(E)
g(p, n)(E) ) c(p, n) iver—N(E)+ps„,pE f

' ~x

B(K,5, E)~25
(3)

where 8„„=8„+S„arethe pseudo-orbit actions, and
c("'" are the amplitudes which were calculated in [15].
The spatial structure near the pth primitive orbit is
mainly determined by the n = 0 term, while the higher
values of n correspond to higher powers of e "& where up
is the stability exponent. It is proportional to b, (p s) (E)
and it has a form of quadratic fringes e& I' where
X = (Q, P) is the coordinate on the Poincare surface of
section along the orbit, and Rp is a two by two matrix
[Eq. (3.14) of [15]] which depends only on the eigenvec-
tors of the linearized motion on the surface of section.
The higher corrections with n) 0 are, in addition, mul-

tiplied by a polynomial function g&" of order n of the
argument &XR~X.

The term "scar" will now be quantified. For this pur-
pose it is useful to define the weight of a scar as the in-
tegral of the Wigner function W~(x) over a narrow tube
which surrounds the periodic orbit in phase space, and
to subtract the contribution of the background. One sees
from (2) that the contribution associated with a given pe-
riodic orbit is concentrated in a small region surround-
ing the orbit, since the contribution from more distant
parts averages out to zero. The size of this region on the
Poincare surface is of order h. Therefore, if the tube is
wide enough, the integral over the contribution to W~(x)
associated with the pth orbit can be calculated semiclas-
sically. Denoting this contribution by Y„(E) oneobtains

(4)

with

g'(E ) = ) 'A„—(E ) + ~d{E )b„(E), (5)

where d(E) is the mean density of states. Notice that
the scar weight is measured relative to the background
[that is, proportional to A, (E~)]. A large negative value
of Yp(E~), therefore, corresponds to a situation in which
the probability density in the vicinity of the periodic orbit
is small, i.e., to an antiscar.

For billiards, (2) is inapplicable for the calculation of
Wigner functions [6]. Nevertheless, the expression for
the scar weight (4) holds in this case as well. It may be
derived from an extension of [14] to billiards [16).

The model which will be explored numerically in what
follows is a variant of the hyperbola billiard studied ex-
tensively by Sieber and Steiner [17]. It consists of a par-
ticle of mass m moving in a two dimensional billiard il-

lustrated in Fig. 1. The classical motion of this system is
known to be completely chaotic. The eigenstates of the
system may be classified according to the C4„symme-
try group. The results that will be presented correspond
to the class of the wave functions which vanish on the
boundary of the fundamental domain shadowed in the
figure. The units 2m= 5= 1 are used.

The semiclassical spectral determinant of this system,
calculated using (1), is depicted in Fig. 2. The cal-
culation involves 17347 primitive orbits which are the
shortest among those that bounce the boundary up to
13 times.

The weights Y„(E), calculated for the orbits (—) and

where Tp is the period of the primitive orbit p. This ex-
pression does not measure the actual weight of the scar,
since in the same tube there may be contributions from
other orbits which are not taken into account. How-
ever, due to the normalization of the signer function,
if Y„(E) is of order unity, @ is expected to be scarred
along the pth orbit. In this case the scar weight may
be approximated by Y„(E). In the more general ease,

is predicted to be scarred if a considerable part of
the weight is concentrated on few Yp(E ) that are much
higher than the rest. Then the scarring pattern is ex-
pected to be more complicated.

The contributions from the periodic orbits as well as
those associated with the background are interrelated.
This is a consequence of the normalization of the Wigner
function which leads to the sum rule,

2L

I"IG. 1. The billiard model used for numerical calculations
together with 6 of its periodic orbits. The shadowed area
marks the fundamental domain.
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FIG. 2. The semiclassical spectral determinant (1) of the
billiard shown in Fig. 1. The vertical bars along the en-

ergy axis indicate the position of the exact eigenvalues (122
of them).
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FIG. 3. The scar weights of the orbits (—) and (+—) calcu-
lated from (4). The vertical bars are located at the energies
E„which allow standing waves along the orbits. The dashed
line is the approximation (6) for the peak amplitude.

(+—), are plotted in Fig 3. These are evaluated on
the semiclassical approximation for the energy spectrum
(Fig. 2). A clear feature of this figure is the periodicity
structure of the peaks along the energy axis. These peaks
may be intuitively associated with the set of energies

(E„}which allow "standing waves" along the periodic
orbit, i.e., those which satisfy the quantization condition

S„(E„)=27rhn+p„h, where n is an integer and p„is the
Maslov phase.

The amplitudes of the peaks of the least unstable or-

bit may be estimated assuming its contribution to the
Wigner functions to be the dominant one. Substituting
the sum rule (5) into (4), and using the diagonal approxi-
mation and the Hannay and Ozorio de Almeida sum rule

[18] in order to estimate the contribution from all the
other orbits, one obtains

within the tube is very different.
Most of the fine details of the scarring pattern proba-

bly cannot be explained in the framework of semiclassical
theory. However, some of them result from interference
with other scars. For instance, the wave function No. 94
shown in Fig. 5(a) is scarred by mainly two orbits, (+—)
and (+ ——), drawn by the solid and the dashed lines,
respectively. At regions where the separation between
the two orbits is less than a few wavelengths, a strong
enhancement of the density is observed, and the scarring
pattern is washed out. It is easily recognized where the
two orbits are suEciently separated. A different inter-
ference pattern appears when it involves a scar and an
antiscar, as shown in Fig. 5(b), where the density cor-

responding to the wave function No. 73 is plotted. The
antiscar along the orbit (—) [see Fig. 3(a)] is designated

with

Yp(E) =

C = 7rhu„d(E)/T„,

where u„is the instability exponent of the pth orbit. It is

represented by the dashed line in Fig. 3(a). For two di-

mensional billiards d(E) is approximately constant while

Tz is inversely proportional to ~E. Thus the scar weights

decrease as I/~E in the limit E » oo. Nevertheless,

large weights may also be found at relatively high en-

ergies since there Y„(E)is inversely proportional to u„.
Thus, as the instability of the orbit decreases its scar
weights increase and the energy interval at which they
appear becomes wider.

The densities corresponding to several wave functions
numbered and indicated by arrows in Fig. 3(a) are shown

in Fig. 4. These are scarred by the orbit (—) drawn by
a thick line. The thin lines on both sides of the peri-
odic orbits mark a strip of width that is twice the wave-

length A where the contribution from the periodic orbit
is expected to be large. Although all these functions are
scarred along the same periodic orbit, their precise shape
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FIG. 4. The densities of the wave functions Nos. (a) 70,

(b) 71, (c) 87, and (d) 107 scarred by the orbit (—). The
corresponding weights are indicated by arrows in Fig. 3(a).
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(b)

gross features of the scarring pattern may be character-
ized by the set of scar weights (Y„(Ec,)).

We are grateful to N. Brenner, E. 3. Belier, and S.
Tomsovic for very informative discussions. This work was

supported in part by the U.S.-Israel Binational Science
Foundation (BSF), and by the Fund for Promotion of
Research at the Technion.

FIG. 5. The densities of the wave functions: (a) No. 94
scarred by the orbits (+—) and (+ ——); (b) No. 73 scarred
by (+—) and antiscarred by (—).

by the tube which surrounds this orbit, while the orbit

(+—) that scars the wave function [see Fig. 3(b)] is drawn

by a thick line. The structure of the wave functions is
expected to become more obscure as the number of scars
and antiscars with large weights increases. In such cases
these terms may become meaningless.

The above procedure was repeated for many wave func-

tions. Plots of the type presented in Fig. 3 were used
to predict and identify which wave functions are scarred
by specific orbits. Then the densities were plotted (as
in Figs. 4 and 5) and examined visually. All the wave

functions that were predicted to be scarred by specific
orbits were indeed found to be scarred by these orbits.
In the present work, 18 wave functions scarred according
to these predictions were obtained with no counterexam-
ple. Therefore the likelihood ratio for the validity of this
criterion relative to its complete irrelevance, namely, to
a situation in which the regions where the densities are
large are totally unrelated to the specific classical peri-
odic orbits, as predicted in this work, is l: = 2is. It was
obtained assuming that if the scarring criterion is wrong,
the probability to find by pure chance that a specgc wave

function is scarred by the periodic orbit that is predicted
is I/2. The likelihood ratio 8 is the measure of statistical
significance of the verification of the scar criterion [19].

In this work the term "scar" has been quantified by
introducing the scar weight which measures for an eigen-
state the excess probability of the system to be in a small
tube surrounding a given classical periodic orbit in phase
space. In the semiclassical limit this weight is expressed
in terms of a finite number of classical periodic orbits. It
therefore provides a way for predicting which of the wave
functions is scarred or antiscarred on the basis of purely
classical information. This was verified numerically for a
chaotic billiard. Moreover, it was demonstrated that the
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