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Tunneling versus Chaos in the Kicked Harper Model
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We study the interplay between tunneling and chaos in a quantum system which classically would

be weakly chaotic. We show that the tunneling rate between two stable islands is exponential and

regular when the characteristic size of the chaotic region separating the islands is much larger or much

smaller than Planck's constant. When the chaotic region and Planck's constant are of the same size the

tunneling rate is shown to be irregular. This result is obtained by means of a numerical analysis of the

quantum kicked Harper model, but we argue this to be a generic effect of classical chaos on tunneling.

PACS numbers: 05.45.+b, 03.65.—w, 73.40.Gk

The search for the quantum properties of those sys-
tems which are chaotic within the theoretical framework
of classical mechanics is an active field of investigation
[1]. On the other hand, tunneling is a typically quantum
mechanical effect and consequently it would be of ex-
treme importance to assess what inhuence if any classical
chaos might have on it. In the past few years there has
been an increasing interest in this problem [2-6]. The at-
tention of most researchers focused on a particle moving
within a double-well potential under the action of a coher-
ent perturbation. It has been conjectured that chaos might
enhance the tunneling rate by several orders of magni-
tude [3]. However, the more recent theoretical analysis
of some authors [4,5] shows that this enhancement of the
tunneling rate (or, in some cases, the opposite effect of
quenching) can be explained by adopting the relatively
simple scheme of a time periodic force acting on a quan-
tum mechanical doublet of states. Thus the coincidence of
enhanced tunneling and enhanced chaos [3] cannot be re-
garded as being a direct effect of chaos on tunneling, but
rather as a consequence of a perturbation, which, while
increasing the size of the chaotic region, also affects the
dynamics of the tunneling doublet.

More relevant to the discovery of a real influence of
chaos on tunneling seem to be some results reviewed by
Bohigas et al. [6] and the paper by Uttermann et al. [7].
The latter analysis shows that the dependence of the
tunneling rate on the nonlinearity strength significantly
departs from the unperturbed case when the size of the
tunneling wave packet becomes comparable to that of the
stable islands of the periodically perturbed double-well
potential.

The purpose of the present Letter is that of giving
further support to properties of this kind using the so-
called kicked Harper model (KHM). The KHM, widely
studied in the literature of quantum chaos [8], is the
quantum mechanical version of the following classical
area preserving mapping:

q„+t= q„—2me sin(2n p„),
p„+t= p„+2m. csin(2m. q„+~).
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FIG. 1. The classical phase-space structure for different e.
The values of the nonlinear parameter are (a) e = 0.01,
(b) e = 0.025, and (c) e = 0.04.

This system is periodic with respect to both the coordi-
nate q and the momentum p, thereby making it possi-
ble for us to describe the phase-space structure of it by
means of a single unit square, or tile. This is illustrated

by Fig. 1 which shows the structure of the phase space
for three different values of the parameter e, the non-

linearity strength. We see that at the smallest value of the
nonlinearity strength the dynamics is dominated by regu-
lar orbits enclosed by separatrices [Fig. 1(a)]. At larger
values of the nonlinearity strength the motion in the close
vicinity of the separatrix becomes distinctly chaotic [1(b)],
and upon further increase the size of the chaotic region
increases [1(c)].

To study the quantum version of KHM one needs
to quantize map (1) over a torus containing an integer
number of tiles. The quantization prescription we adopt
[9] rests on imposing periodic boundary conditions on
both the observables q and p (i.e., q + qo = q and

p + po = p, with qo and po integer numbers), and leads
to a finite Hilbert space. Note that the above procedure
is allowed only in the case where the Planck constant h

is a rational number. Indeed, if M is the finite number
of the basis states used, h must fulfill h = ~', where
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qo and po are the integer numbers that specify the size
of the torus in the q and p directions. It is important to
point out that the classical system depends only on the
parameters qo, po, and e which are independent of the
quantum parameter M.

The quantum KHM is described by the quantum coun-
terpart of the Hamiltonian generating map (1)

0 = icos(2vrp) + icos(2mq)6i(t), (2)

where Bi(t) is a periodic delta function of unit period.
The Floquet operator, namely, the unitary operator which
evolves the wave function for one period of the external
perturbation, is

U = exp i c—os—(2m. q) exp i —c—os(2mP) . (3)
h

We call ~m) the eigenstates of the P operator. On the basis
of these states the Floquet operator (3) reads

S(m) = )m + N), m = O, . . . , N —1,

S(m) = )m —N), m = N, . . . , M —1.

If M is odd, we define N as (M —1)/2, and we get

S(m) = (m + N + 1),

S(m) = im), m = N,

S(m) = [m —N —1),

m =O, . . . , N —1,

m=N+ 1, . . . , M —1.

The eigenstates of the tile-shift symmetry S are usually
given by the symmetric and antisymmetric combination
of states [m) and S~m). Using these states as the basis
set we divide the operator U into two blocks which can
be separately diagonalized. For the group of symmetric
states the explicit expression for the matrix elements of
the operator U coincides with the expression (4) for the
one-tile torus, but with a number of states equal to N. The
corresponding expression for the group of antisymmetric
states is slightly different, and it also depends on whether

i"' cos-(2o o '
)U = e M

m, ml

M —1 q k
1 2~i "(ml m) —2n i ' cos 2n ~

x — e M e &o&o ss (4)
Mko

Notice that the matrix element (4) is left unchanged by
translations of an integer number of tiles in the p (q) di-
rection. Thus it is possible to further reduce the dimen-
sion of the Hilbert space by exploiting the corresponding
symmetry. Let us focus on the two-tile case, i.e., qo = 1,
po = 2, which is the object of the numerical investigation
of this Letter. It is easy to realize that the definition of
operator S, which corresponds to the shift by one unit in
the p direction, has to be conveniently adapted to whether
M is even or odd. If M is even, defining N as M/2 we get

M is even or odd. We give only the even M case:

-i2ssEN cos(2ss~)
m, ml

N —1

X — e i(m ~

—m) [2m —"+Ss] 2sr—isN cos(2o —+p)
N N

N k=o

(a) (b) (c)
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FIG. 2. Contour plots of the phase-space representation of 3
out of the 30 eigenstates of the Floquet operator in the case
M =30, e =0.04.

The difference with the symmetric case is given by the

presence of the phase p = —which is essentially coinci-M

dent with the Planck constant h (h = M). This leads us
to conclude that, in the case of a small h, the states that
diagonalize the symmetric and antisymmetric blocks must
be almost the same, and that both must virtually coincide
with the eigenstates of the single-tile case.

Let us now proceed to the numerical analysis of the
system. In Fig. 2 we consider the single-tile model
and we show the phase-space representation of some
eigenstates for the case M = 30 and e = 0.04, by means
of the Husimi distribution properly extended to our case
[10]. Note that this quantum condition corresponds to
the classical phase space shown in Fig. 1(c). A widely
accepted property of a classically chaotic quantum system
is that there exist eigenfunctions peaking on the invariant
classical tori, thereby giving rise to localized states. We
find that the state illustrated by Fig. 2(a), and located in
the middle of the deterministic island, fits this expectation.
On the other hand, there also exist states which are
essentially located in the chaotic region, as shown in
Figs. 2(b) and 2(c). Thus we have available a criterion to
divide the Floquet states into reguIar and irregular states,
according to whether, within. the Husimi representation,
the corresponding distributions belong to the regular or
the irregular portion of the classical phase space.

In the case of a single tile this classification of the
Floquet states makes it possible to predict qualitatively
the quantum evolution of a wave packet. In fact an initial
state entirely located in the regular regions is expressed as
a linear superposition of only regular eigenstates, and for
this reason does not significantly move out of this region.
Similarly, a state initially located in the stochastic web
will never significantly invade the regular region.

The tunneling phenomenon requires at least two tiles.
In this case we proceed as follows. We diagonalize the
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Floquet operator and look for the doublets corresponding
to states located in the island placed at the center of the
tile. Of course these doublets consist of symmetric and
antisymmetric states with respect to the tile shift. For
each doublet, a state localized in one tile is obtained by
the symmetric superposition of these two states. Among
the doublets we choose that corresponding to the localized
state whose overlap with a minimum uncertainty Gaussian
wave packet centered on the elliptic fixed point is maxi-
mum. Typically the value of this overlap is about 90%.
This is the main doublet, whose quasienergy splitting
AE determines the tunneling rate. Within the theoreti-
cal framework of an Einstein-Brillouin-Keller semiclassi-
cal quantization procedure this should correspond to
ensuring that upon change of h the torus closest to the
elliptic point is always selected. The phase-space repre-
sentation of the two states of the main doublet can be ob-
tained using Fig. 2(a). This depicts half of phase space.
With qo = 1 and po = 2, the complete phase space of
the two states consists of two tiles, each of them with a
contour plot similar to that of Fig. 2(a). The phase-space
representation of the symmetric state of the main doublet
coincides with the resulting two-tile picture, whereas that
of the antisymmetric state would be slightly different
from it due to the mathematical properties outlined above;
see Eq. (7).

The influence of classical chaos on tunneling is proved

by numerical evaluation of the quasienergy splitting of
the main doublet (proportional to the tunneling rate) as
a function of M at different values of e. At e = 0.025
we find (see Fig. 3) that for both small and large M's
AE undergoes oscillations around a mean value resulting
in a regular exponential decrease upon increase of M.
In between these two regular regions an intermediate
region appears where the tunneling rate is proven to be
a random function of M. To make the physics behind this

figure more transparent, we must remark that, due to the

symmetry properties discussed earlier, the even and odd
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FIG. 3. Energy splitting of the main doublet versus M;
e = 0.025.
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FIG. 4. Energy splitting of the main doublet versus the even
M's; e = 0.01 (o) and e = 0.04 ( ~ ). The dashed line denotes
the result obtained by numerically solving the integrable case
for e = 0.01. The solid line is a guide for the eye.

M cases are expected to resu1t in different expressions for
the tunneling rate. The dotted lines of Fig. 3 are guides
for the eye, showing that the tunneling rate would be an

exactly exponential function of M if only even or only
odd M were considered.

The numerical results obtained show that the depen-
dence of this behavior on the nonlinear strength is as
follows. At extremely weak values of e the size of the in-

termediate irregular region is negligible. Upon increasing
e it becomes more significant and more extended. Be-
cause of space limitations, here we only report, in Fig. 4,
the result corresponding to a small and a large e. The
line denoted by open circles corresponds to the almost
nonchaotic classical case of Fig. 1(a), where the stochas-
tic region is virtually invisible. We see that the rate of
tunneling dependence coincides with that of the integrable
system denoted by the dashed line in this figure (we ob-

tained this result numerically from the nonkicked Harper
model). The line denoted by filled circles shows the

effect of a large e. Note that in this case the regu-
lar region corresponding to the large values of M is not
shown. We expect that in this physical condition this

regular region should appear at such large values of M,
M ~ 50, and consequently in correspondence with such

a weak quasienergy split, as to be totally hidden by the

numerical roundoff errors.
In conclusion, the numerical results lead us to the fol-

lowing, very transparent, physical interpretation. The de-

terministic island has a characteristic size. If the Planck
constant is much smaller than the size of the island, the

logarithmic plot leads to a straight line with a certain rate

(see Fig. 3): the tunneling rate increases exponentially with

increasing h. This result fits the usual semiclassical pre-
diction for the tunneling rate of one-dimensional systems
expressed by the exponential-like formula AE = Ae
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where S is the classical action associated with the tunnel-

ing. Note that the same law holds true also for time in-

dependent quasi-integrable systems [11],and surprisingly
enough, as shown here for moderate nonlinearity, also in

the case of the quantum KHM. We call this region of
the Planck constant the semiclassical region (SR). On the
other hand, when the Planck constant h is large enough we
recover an exponential, and monotonic, dependence of the
tunneling rate on the Planck constant. This is so because
h is so large as to make the system insensitive to the classi-
cal chaotic structure [12,13], and consequently indistin-

guishable from the integrable case, as confirmed by Fig. 4
showing that the slope of the tunneling rate is close to
that of the integrable case. We call this region the quan-
tum region (QR). We then find an intermediate irregular
region (IIR), where the tunneling rate is an irregular and
nonmonotonic function of h, extremely sensitive to the
value of the two parameters of the quantum KHM. Note
that the numerical analysis proves this behavior to be de-
termined essentially by the properties of the main doublet,
thereby ruling out the inAuence of a third state as in the
case discussed by Bohigas et al. [6].

Thus we are led to predict that if we increase the in-

tensity of the nonlinear strength the size of the determin-
istic islands shrinks, and the size of the chaotic sea is
enhanced. As a consequence, the border between the IIR
and the SR moves towards the region of small Planck con-
stants h. On the other hand, since upon increasing nonlin-

earity the size of the stochastic sea increases, the border
between the QR and the IIR tends to move towards the
large values of the Planck constant. As an effect of this
the size of the IIR is expected to increase upon increasing
the strength of the nonlinearity. This is fully confirmed

by the numerical results.
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