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Exact Distribution of Eigenvalue Curvatures of Chaotic Quantum Systems
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The parametric sensitivity of complex quantum systems is characterized by the distribution
of eigenvalue curvatures A:, defined as the second derivative of the eigenvalues with respect to a
perturbation parameter. For systems without time-reversal symmetry (unitary ensemble), the exact
distribution is found to be P(k) = (2/m)[1+ k ] . This proves a recent conjecture by Zakrzewski
and Delande [Phys. Rev. E 47, 1650 (1993)].

PACS numbers: 05.45.+j, 03.65.—w

Statistical properties of eigenvalue spectra of complex
quantum systems frequently exhibit universal behavior
which depends only on the fundamental symmetries of
the Hamiltonian [1]. A large variety of systems can be
described by three universality classes: Time-reversal in-

variant systems belong to the orthogonal ensemble, sys-
tems without time-reversal symmetry to the unitary en-
semble, and time-reversal invariant systems with strong
spin-orbit coupling fall into the symplectic ensemble.
While the statistical theory of spectra (random-matrix
theory) was originally developed in the context of nu-

clear physics [2], it has now become clear that it has a
much wider range of applicability, including systems such
as molecules [3, disordered metals [4—6], strongly corre-
lated electrons [7,8], and systems whose classical analogs
are chaotic [9]. Universal spectral correlations described
by random-matrix theory have become the hallmark of
quantum chaos.

In many physical circumstances, the energy levels are
studied as a function of an external parameter A such
as an electric or magnetic field. Recently, it has been
established that the parametric motion of eigenvalues
also exhibits universality [10—13]. Szafer and Altshuler

[10] studied the motion of eigenvalues E„of a disor-
dered metallic ring threaded by an Aharonov-Bohm flux

p and found that the correlations between the "single-
level currents" dE„/dp at different flux values are uni-

versal. Subsequently, Beenakker [12] derived the same
correlator from random-matrix theory, and Simons et al.

[13] found a fascinating relation between the parametric
motion of eigenvalues and the imaginary-time evolution
of interacting fermions in one dimension.

An important quantity in characterizing the paramet-
ric motion of eigenvalues is the distribution of level cur-
vatures

d2E„(A)
dA2

Typically, the curvature becomes large close to avoided
level crossings. Hence, one expects that the curvature
distribution P(K) for large curvatures K reflects the sim-

ple behavior of the spacing distribution P(S) for small
eigenvalue spacings S, where P(S) SP with P = 1, 2, 4

P(k) = C, [1+k']-"+Pl/', (2)

where Cp is the normalization constant and k denotes
the dimensionless curvature

k= K
P7r(p(0)) ((dE„/dA) )

(3)

Within their numerical accuracy the distribution (2) ap-
pears exact for the unitary ensemble, while small devi-
ations are visible for the orthogonal and symplectic en-
sembles. It is the purpose of this paper to prove that this
is indeed the exact distribution for the Gaussian unitary
ensemble (GUE).

I evel dynamics in general and the curvature distribu-
tion in particular can be studied directly in experiments
on the diamagnetic hydrogen atom [21] and in microwave
experiments [22]. Also, various thermodynamic effects in

mesoscopic systems such as persistent currents [23] and
the magnetic susceptibility [24,25] are closely related to
the parametric motion of eigenvalues. Another applica-
tion of the level curvatures in mesoscopic systems con-
cerns the Thouless energy of diffusive systems which has
sometimes been defined as the root-mean-square curva-
ture of the levels as function of an Aharonov-Bohm Aux

[26,27]. The distribution (2) implies that this definition
is problematic because the second moment of P(K) di-

verges in the orthogonal ensemble [19].

for the orthogonal, unitary, and symplectic ensembles, re-
spectively [1]. Indeed, Gaspard et al. [14] developed the
statistical mechanics corresponding to the "equations of
motion" of the eigenvalues (Pechukas gas [15]) and pre-
dicted that the curvature distribution has the universal
form P(K) K t +t ) for large K. Subsequently, this
prediction was verified numerically for a number of sys-
tems including chaotic billiards [16], the kicked top [17].
the diamagnetic hydrogen atom [18], and the Anderson
model for disordered metals [19]. While the curvature
distribution had so far resisted a complete analytical so-
lution except, for 2 x 2 matrices [18,20], Zakrzewski and
Delande [18] found that numerical results for the orthog-
onal, unitary, and symplectic kicked tops are well de-
scribed for all curvatures by the distributions
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H(A) = (cos A) Hi + (sin A)Hz (4)

with eigenvalues E„(A) Here H. i and H2 are both ran-

dom N x N matrices with probability distribution

P~(Hi, Hz) exp( —2Ntr(Hi + Hz)). (5)

For the GUE considered here, the measure is dHidHz ——

(dHi), (dHz), . In the limit N oo, the aver-

age density of states p(E) = (trb(E —H(A)))H, H, is

given by the well-known semicircle law p(E) = (N/z ) [1—
(E/2)z] ) z. Hence, with these definitions the width of the
spectrum is of order N, while the typical level spacing
is of order 1/N. Furthermore, it turns out that the cur-

vature distribution becomes independent of A and hence,

only the case A = 0 is considered in the following. An ez-

In his semiclassical theory of spectral correlations

Berry [28] has shown that while long trajectories give

rise to generic behavior, nonuniversal behavior appears
due to short trajectories. In particular, short periodic
orbits 1ead to nonuniversal contributions to the density
of states and to scarring of the wave functions [29]. Nu-

merical studies for various systems showed that the cur-

vature distribution is more sensitive to nonuniversal fea-

tures than other spectral statistics such as the spacing
distribution [16,18]. For this reason, it has been sug-

gested [18] that the curvature distribution can be em-

ployed as a sensitive measure of the degree of scarring
of a system. However, to identify nonuniversal features
unambiguously, the exact generic distribution needs to
be known. In the following, the curvature distribution is

computed exactly for the unitary ensemble.
Within random-matrix theory the problem can be for-

mulated in terms of a one-parameter family of Hamilto-

nians

act expression for the eigenvalue curvatures follows from
second-order perturbation theory,

N

P(K) =, ) ~(E„)~(K K„-)
p(0)

where the brackets denote the average with the distri-
bution function (5). Spectral statistics become universal

only if density-of-states effects are eliminated. Numeri-

cally, this is usually achieved by unfolding the spectrum.
Here the analogous procedure is to consider only levels

at a fixed location within the semicircle spectrum. This
is the origin of the first 6 function in (7). The prefactor
in (7) ensures that the curvature distribution is prop-
erly normalized. Using the Fourier representation of the
second b function in (7), the average over Hz can be per-
formed. One obtains

N

P(K) = ) e~
p(0) 2x

)
— iNE /2

.".n+iNE /2
mvhn Hg

(8)

The integral over a can be done by contour integration

K = EO+2(')"),- E.(0) E (0)

where (H2)„denotes the matrix elements of Hq in the
basis in which H~ is diagonal. From now on, the argu-

ment of E„(0) will be suppressed and it is understood
that the E„denote the eigenvalues of Hq.

The curvature distribution is defined by

N

p(&) = —9' —~) (~(&i)I~(&)e(—&~) + 8( &)e(@2)II&21~-
m=

E
E

H1

(9)

Here, 8(x) denotes the unit-step function, and it was used that the average over Hi is symmetric under relabeling of
the eigenenergies E„[cf. Eq. (10) below]. Since Eq. (9) depends only on the eigenvalues of Hi, the average can be

performed using the well-known joint eigenvalue distribution of the GUE [1],

P)v((E„H = Cp z, )v (E, —E~) exp ( N) E~-—

i&j j—1

(10)

The constant Cp 2 iv is defined by the normalization condition f dEi dE~P~((E„)) = 1. While it appears to
be a formidable task to do the integrals over the E, directly, progress can be made by considering the integrals over

Ei and Ez in Eq. (9) separately and rewriting the remaining integrals as an average over an (N —2)-dimensional
random-matrix ensemble. One finds

P(K) = A)v dE2 E2 exp( —
z [N(N —2)] tKtE2 —

2 (N —2)E2)([det H] det(H —E2))H

Here, the prefactor is
' N'+3

N N(N )
Cp 2iv ~(N

—
21t

p(0) 2 Cp=z, (iv-2) & N ) (12)
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and H now denotes a random (N —2) x (N —2) matrix as indicated by the superscript (N —2) on the average.
The average over the determinants can be computed after representing them in terms of integrals over anticommuting

(Grassmann) variables [31],

([det H] det(H —E2))H

4

d( d( exp —) E, (Hb —E )(
CT 1

Here, ( denotes an N-dimensional vector whose entries (, are Grassmann numbers and the measure is d( d(

, d(, d(, . E denotes the diagonal matrix E = diag[0, 0, 0, Ez]. Performing the average over H, one obtains

([det H] det(H —E2))H "( d( exp & ) [(.E., ( —(1/2N)((.(.)((.(.)j t .

The quartic term in the exponent is decoupled by a Hubbard-Stratonovich transformation which introduces an inte-
gration over a Hermitian 4 x 4 matrix p. Finally performing the Gaussian integral over the Grassmann variables one
finds the integral representation

([Bet H] det(H —E~jI» =
(
—

) dp exp ——¹rp, +¹rln F + i p,
2 (15!

27r'
dm(T)

x=1
dA, (A, —A, ),

~ ~ 4 ~

i(j
where dm(T) denotes the invariant measure of SU(4) [the
group volume is normalized to 1 dm(T) = 1].

So far, the calculation is exact for any N. In the follow-

Here, dp, = Q, i dp, ~. It is convenient to change vari-
ables to the eigenvalues and eigenvectors of p, by writ-

ing p = TAT, where A = diag[Ai, Az, As, A4] contains
the eigenvalues A~ of p, , and T denotes the SU(4) matrix
which diagonalizes p. The corresponding Jacobian is

!
ing, the limit N —+ oo is taken, so that the integral (15)
can be computed by the saddle-point method. Further
simplifications arise in this limit because the curvature K
is O(N ). Hence, the leading contribution to the Ez inte-
gral in (11) comes from the region Ez = O(1/N) First, .
this implies that one can neglect the term quadratic in
E2 in the exponent of Eq. (11). Second, the action in

(15) may be expanded to first order in E. Then the
saddle-point equation becomes A = A, independent of
E and T. One finds that the dominant saddle points are
Ao = diag[+1, +1,—1, —1] and its perrnutations. Per-
forming the saddle-point integration over A gives

4X
([det H] det(H —E))H —— e dm(T) exp( —i¹r[TADT'E]).

A general formula for integrals of this form over the SU(n) manifold was obtained bv Itzykson and Zuber [32]. H«e
it is sufficient to note that the integrand depends only on a single column of the SU(4) matrix T, and hence the

integration reduces to one over the unit sphere in C4. One finds

([det H] det(H —E))H ——4N e ~~ sin(NEz) —NEz cos(NE2)
%F2 3

Inserting this expression into Eq. (11), performing the
integral over E2, and noting that k = K/2 from Eqs.
(3) and (5), one obtains the final result for the curvature
distribution of the GUE,

P(k) = —[1+k']

This expression is asymptotically exact for N ~ ac.
In conclusion, the exact curvature distribution of

chaotic quantum systems has been calculated for the uni-

tary ensemble. The result proves a recent conjecture of

!
Zakrzewski and Delande [18] which was based on a care-
ful examination of numerical results. It is interesting
to compare the curvature distribution to the well-known

spacing distribution. While the exact spacing distribu-
tion for large random matrices is not known, the result
for 2 x 2 matrices (Wigner surmise) appears to be an ex-
cellent approximation [1]. By contrast, it has been found

that the curvature distribution of 2 x 2 matrices does not
give a good description of numerical results [18], but for-

tunately, the exact distribution for large matrices can be
obtained analytically.
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