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Random Walking during Quiet Standing
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During quiet standing, the human body continually moves about in an erratic, and possibly chaotic,
fashion. Here we show that postural sway is indistinguishable from correlated noise and that it can
be modeled as a system of bounded, correlated random walks. These novel results suggest that the
postural control system incorporates both open-loop and closed-loop control mechanisms.

PACS numbers: 87.45.Dr, 05.45.+b

Noiselike fluctuations abound in physiological systems
and processes [1]. It has been suggested that the com-
plex, unpredictable behavior exhibited by the mammalian
nervous [2] and muscular systems [3] may be instances
of deterministic chaos. A likely candidate for physio-
logical chaos is the human postural control system, the
output of which is highly irregular [4], as illustrated in

Fig. 1. The identification of postural sway as an instance
of chaos would suggest that there is a simple, dynamical
mechanism at work in balance regulation and may make
possible new therapeutic and preventative strategies for
postural instability.

Chaotic systems are typically characterized by the ex-
istence of an attractor that has a fractal structure and a
sensitive dependence upon initial conditions. Numerical
algorithms which quantify either of these properties have
been developed to detect the presence of deterministic
chaos in experimental time series [5—7]. (In the case of
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FIG. 1. (a) A typical 90-s center-of-pressure (COP) trajectory,
where x and y correspond to the mediolateral and anteroposte-
rior directions, respectively. The corresponding time series are
given in (b) and (c). A Kistler 9287 multicomponent force plat-
form and signal conditioner were used to collect COP trajecto-
ries on ten healthy subjects —five males and five females —of
similar age (19—24 yr, mean 22 ~ 2 yr), height (1.60—1.80 m,
mean 1.69 ~ 0.08 m), and body weight (54.4—77.1 kg, mean
64.3 ~ 8.4 kg). Each subject stood barefoot in an upright pos-
ture in a standardized stance on the platform for a series of five
90-s trials under eyes-open conditions. The COP signals were
antialiased using a second-order low pass fi1ter (with a cutoff
frequency of 34.1 Hz) and subsequently sampled at a rate of
100 Hz.

scalar time series, such algorithms usually require one to
reconstruct first the system's attractor by embedding the
time series in m-dimensional phase space [8].) The most
common way to approximate the fractal structure of a sys-
tem's attractor is to calculate the correlation dimension,
D2 [5]. Chaotic systems are generally characterized by
finite, noninteger, i.e., fractal, values for D2. To compute
D2, one first calculates the correlation sum, C(e), which is
the fraction of pairs of points (on the reconstructed attrac-
tor) that are separated by a distance less than e, for various
values of e. The correlation dimension can then be deter-
mined from the slope of a suitable, linear scaling region
in the plot of inC(a) versus inc. A system's sensitivity
to initial conditions can be quantified by computing its
Lyapunov characteristic exponents. Lyapunov exponents
provide a measure of the rate at which initially nearby
trajectories on an attractor diverge or converge as time
progresses. The presence of a positive Lyapunov expo-
nent is sufficient for diagnosing chaos and reflects the fact
that nearby trajectories diverge at an exponential rate. For
experimental time series, the largest Lyapunov exponent
A1 can be determined from the slope of a suitable, linear
scaling region in the plot of (lnd, (i)) versus i At, where

d, (i) is the distance between the jth pair of nearest neigh-
bors (on the reconstructed attractor) after i discrete time

steps, the symbol ( ) denotes an average over all values
of j, and At is the sampling period of the time series [7].

With short, noisy time series, the aforementioned algo-
rithms can give spurious results; i,e., they can indicate
the presence of chaos in systems that are not chaotic.
Recently, surrogate data techniques have been developed
to detect such "false chaos positives" [9,10]. Surrogate
data sets are created by randomizing some property of the
original time series. (For example, a surrogate data set
can be formed by taking the Fourier transform of a time

series, randomizing the phase information, and then taking
the inverse Fourier transform; this procedure yields a data
set of correlated noise with amplitude spectral characteris-
tics identical to that of the original time series. ) The sur-

rogate sets are then processed according to the identical
algorithms that are applied to the original time series, and

the results are analyzed to test the null hypothesis that the
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properties of the surrogate data sets are sufficient to ac-
count for the results obtained from the original time series.
(The null hypothesis tested with phase-randomized surro-

gates is that the original time series is correlated noise

[9,10].) If the results from the surrogates and the origi-
nal time series are not significantly different, then the null

hypothesis cannot be rejected.
We applied the above techniques to an analysis of the

human postural control system. We quantified postural

sway in ten subjects (see Fig. 1 caption) by measuring

the time-varying displacements of the center of pressure

(COP) under each individual's feet (Fig. 1). We tested
the null hypothesis that postural sway can be modeled
as a correlated noise process. We found that although

there appeared to be some structure in the reconstructed
COP phase portraits [Fig. 2(a)], similar patterns were

apparent in the phase portraits for the phase-randomized

surrogates [Fig. 2(b)]. Likewise, the plots of lnC(a)
versus inc for the original COP data [Fig. 2(c)] and the

phase-randomized surrogates [Fig. 2(d)] were virtually

indistinguishable. In each case, there was no clear
linear scaling region of significant length [12] and the

slopes of the plots failed to converge with increasing
embedding dimension m. (Thus, it was not practical
to extract values for D2.) These qualitative results are
those expected for a stochastic system. The Lyapunov
exponent results were similar —the plots of (lnd, (i))
versus i b, r for the original posture data [Fig. 2(e)] and the
phase-randomized surrogates [Fig. 2(f)] were essentially
identical. Although there was no clear linear scaling
region in the respective plots, the region between O.S and

I.S s (in particular, for m ( 14) could be mistaken as

appropriate for extracting a positive Lyapunov exponent.
We therefore estimated Ai over this region for the original
COP data and found that the computed values appeared
to converge for embedding dimensions of 6, 8, and 10
[Fig. 2(g)]. However, a similar convergence was found
in the results for the ensemble of surrogate data sets

[Fig. 2(g)]. In addition, this anomalous scaling region,
in the original and surrogate data sets, fiattened out with

increasing embedding dimension [Fig 2(g)], .as would

be expected for a stochastic system [7]. For I ) 4,
there were no statistically significant differences between
the computed values of A~ for the original posture data
and the phase-randomized surrogates [Fig. 2(h)]. (The
significant differences found for m ~ 4 can be attributed
in part to the ill-defined nature of the scaling region for
these small values of I [Figs. 2(e) and 2(f)].) Similar
results were obtained for all 10 subjects (Fig. 3).

Given these findings, we were unable to reject the
null hypothesis that postural sway is correlated noise.
We therefore concluded that the postural control system
should not be modeled as a chaotic process and that it
is better represented as a stochastic one. These general
results are consistent with those obtained from surrogate
analyses of other physiological time series, such as elec-
trocardiograms [9], electroencephalograms [10], and H
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FIG. 2. Dynamical systems analyses of a COP time series
and phase-randomized surrogate data sets for a representative
subject. All plots, in this figure and other figures, present
results for the y-coordinate time series; similar findings were
obtained for the x-coordinate time series. (a) A portion of the
two-dimensional reconstructed phase portrait for the original
COP time series. The reconstruction delay (rq) was determined
using the reconstruction-expansion approach [11]. (b) As
in (a), but for a phase-randomized surrogate data set [9,10]
that was generated from the original COP time series in (a).
(c) Plots of ln C(e) versus lne for the original COP
time series in (a) (e is in units of mm). The Grassberger-
Procaccia algorithm [5] was used to compute C(e), and the
reconstruction-expansion approach [11]was used to determine
the reconstruction delays for the time-series embeddings. The
results for embedding dimensions 2—20, in increments of
2, are shown. (d) As in (c), but for the phase-randomized
surrogate data set in (b). (e) Plots of (lndiv) versus time
for the COP time series in (a). These plots were generated

by computing the average separation of nearest neighbors on
the reconstruction attractor [7]. Here "(Indiv)" and "Time
(s)" are used to denote (lnd, (i)) and iht, respectively. The
results for embedding dimensions 2—20, in increments of
2, are shown. (f) As in (e), but for the phase-randomized
surrogate data set in (b). (g) Calculated values of the largest
Lyapunov exponent, A|, for the original time series (6) in (e)
and for phase-randomized surrogates (+). An ensemble of ten
different phase-randomized surrogate data sets was generated
from the original time series and subsequently analyzed. The
results are plotted as a function of embedding dimension. All
values for Ai were extracted from the scaling region between
0.5 and 1.5 s. (h) Significance of the differences between the
computed AI values for the original COP time series and the
surrogates in (g). The significance values and error bars were
calculated according to the techniques described by Theiler
et al. [10]. Here a., is the standard deviation of the A| values
for the surrogates and AAI is the difference between the value
of Ai for the original COP time series and the mean value of AI

for the surrogates. A dashed line is plotted at the significance
level which corresponds to a p value of 0.05.
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FIG. 3. Calculations of the largest Lyapunov exponent for the
experimental population. (a) Calculated values of A~ (for an
embedding dimension of 12) for representative COP time series
(h, ) and phase-randomized surrogates (+) for each of the ten
subjects. These values were computed using the techniques
described in the legend for Fig. 2(g). In each case, the same
scaling region was used to extract AI values from the original
COP time series and the surrogates. (b) Significance of the
differences between the computed AI values for the original
COP time series and the surrogates in (a). This plot was
generated using the techniques described in the legend for
Fig. 2(h).

reflexes [13]. Although deterministic chaos has been ob-
served in perturbed biological preparations, e.g., periodi-
cally stimulated chick heart cells [14] and squid axons
[15],we are not aware of any documented cases wherein
the "steady-state" behavior of a physiological system has
been definitively identified (using surrogate data tech-
niques) as an instance of chaos.

Motivated by the above results, we then examined the
hypothesis that postural sway can be modeled as a cor-
related random walk. In a correlated random walk, past
increments in displacement are correlated with future in-
crements; i.e., the system has memory. These correlations
can be quantified by computing the scaling exponent H
from the relation [16]

(~y') = ((y —y —.)') —r'".
where (hyz) is mean square displacement and r is time
interval. Scaling exponents can be any real number
between 0 and 1. Classical random walks correspond to
H = 0.5. If H & 0.5, then past and future increments are
positively correlated, whereas if H ( 0.5, then past and
future increments are negatively correlated [16].

We applied these random walk techniques to the
posture data. (Similar correlation techniques have been
applied to DNA sequences [17] and heartbeat data
[18].) We found that the double-logarithmic plots of
mean square COP displacement versus 7 exhibited two
scaling regions [Fig. 4(a)]: a short-term region over
which the time series behaved as a positively correlated
random walk (H ) 0.5) and a long-term region over
which it behaved as a negatively correlated random walk
(H ( 0.5) [19]. (A third, distinct region, over which
H = 0, is also expected after a sufficiently large v- given
the fact that COP displacements are bounded by the
base of support defined by an individual's feet; i.e., for
bounded motion, (b,yz) saturates to a constant value after
a sufficiently large r [20]; the time series considered
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FIG. 4. Random walk analyses of COP time series and
shuffied surrogate data sets. (a) A resultant double-logarithmic
plot (solid line) of mean square COP displacement ((hy'))
versus time interval (r) for the representative subject presented
in Fig. 2. The displacement analysis was carried out by
computing the square of displacements between all pairs of
points separated in time by 7. The square displacements were
then averaged over the number of v making up the time series.
This process was repeated for increasing values of v. The
results from the 5 trials for each subject were then averaged
to obtain a resultant plot of (b,y2) versus r for each subject.
Shown also are the fitted regression lines (dashed lines) for
the short-term and long-term scaling regions and the respective
computed values for the scaling exponents (H). (b) As in
(a), but for shuffled surrogate random-walk data sets that were
generated from the original COP time series. (c) Calculated
values of H for the short-term (Cl) and long-term (6) scaling
regions of the original COP time series and for the shuffled
surrogates (+) for each of the ten subjects. For each subject, an
ensemble of 10 different shuffled surrogate sets was generated
from each of the 5 original COP time series and subsequently
analyzed. The regression lines fitted for computation of the
respective scaling exponents had r' values that ranged from
0.97 to 1.00. (d) Significance of the differences between
the computed H values for the original COP time series and
the surrogates in (c). These plots were generated using the
techniques described in the legend for Fig. 2(h). A dashed
line is plotted at the significance level which corresponds to a
p value of O.OOS.

in this study were not long enough to characterize this
scaling region reliably. ) For the experimental population
[Fig. 4(c)], the short-term H values ranged from 0.78
to 0.90 (mean 0.83 ~ 0.04), whereas the long-term H
values ranged from 0.19 to 0.36 (mean 0.26 ~ 0.06).
The transition region over which the correlation changed
polarity occurred in all subjects at ~ = 1 s.

In order to determine whether these computed correla-
tions were artefacts of the data-set size and/or the ampli-

tude distribution of the increments, we randomly shuffled
the temporal order of the increments [21] making up the
COP time series and then recombined the increments to
form surrogate random-walk sequences. %e found that

the double-logarithmic plots of mean square displacement
versus r for the shuffled surrogates displayed only a single
scaling region [Fig. 4(b)], as would be expected for an un-
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correlated random walk. The H values for the surrogates
(range 0.47—0.53, mean 0.50 ~ 0.02) were also similar to
those expected for a classical random walk [Fig. 4(c)], and
they were significantly different from those computed for
the original COP time series [Fig. 4(d)]. Thus, we were
able to reject the null hypothesis that postural sway is an
uncorrelated random walk. These results suggest that the
correlations in the COP time series are due to underlying
dynamic processes and that they are not artefacts of the
analysis. We therefore concluded that postural sway can
be modeled as a system of bounded, correlated random
walks.

From a physiological standpoint, the presence of short-
range positive correlations in the COP data suggests that
the postural control system utilizes open-loop control
mechanisms over short-term intervals of time (r & 1 s)
and small displacements. That is, the system allows the
COP to "drift" for some time and/or displacement. This
novel finding, which suggests that the system allows a cer-
tain amount of "sloppiness" in balance control, challenges
the generally accepted notion that erect stance is always
regulated by the action of feedback mechanisms [22]. It
is important to note, however, that our analyses do not ex-
clude the role of feedback mechanisms, such as the visual,
vestibular, and proprioceptive systems, in the regulation
of upright stance. In fact, the presence of longer-range
negative correlations in the COP data suggests that closed-
loop control mechanisms are utilized over long-term inter-
vals of time (r ) 1 s) and large displacements. That is,
after some time and/or displacement, the postural control
system shifts the COP back towards a relative equilibrium
position. The integration of open-loop control schemes
with closed-loop feedback mechanisms for balance regu-
lation may have evolved to account for feedback-loop de-
lays and inherent noise in the system (e.g., due to inherent
muscle force fluctuations [23]), and to simplify the task of
integrating vast amounts of sensory information when the
body is not in jeopardy of instability.
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