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Monte Carlo results for the frequency dependent conductivity o(w), the angular resolved
photoemission spectral weight A(p, ), and the electron momentum distribution (n,) are calculated
for a half-filled Hubbard model with the on-site Coulomb interaction U equal to the bandwidth 8. We
find that even for U = 8¢, a spin-density-wave approximation provides a sensible description of this
data and hence a useful picture of the electronic degrees of freedom in the insulating state.

PACS numbers: 79.60.Bm, 74.72.—h, 78.50.Ec

Neutron scattering experiments show that the spin
degrees of freedom of the insulating cuprates are well
described by an § = 1/2 antiferromagnetic Heisenberg
model. However, the interpretation of the frequency
dependent conductivity and angular resolved photoe-
mission spectroscopy (ARPES) studies of the insulating
cuprates require that the charge degrees of freedom also
be included. A spin-density-wave (SDW) description
provides a weak-coupling approach, in which both the
collective antiferromagnetic spin fluctuation and the
itinerant electronic charge degrees of freedom can be
taken into account. Furthermore, Schrieffer, Wen, and
Zhang [1] showed that a random phase approximation
(RPA) calculation of the spin-wave spectrum in an SDW
state not only gave the correct weak-coupling results, but
in addition provided a sensible fit to the strong-coupling
behavior.

Here we report quantum Monte Carlo (QMC) results
for the conductivity, the one-electron spectral weight,
and electron momentum occupation of a two-dimensional,
half-filled Hubbard model with an on-site Coulomb inter-
action U equal to the one-electron bandwidth. Thus, we
are well out of the weak-coupling regime. For these pa-
rameters, local moments are well formed and the ground
state is characterized by long-range antiferromagnetic
order. The frequency dependent conductivity and the
single-particle spectral weight exhibit a well developed
insulating gap set by the Coulomb interaction. Neverthe-
less, we find that the frequency dependent conductivity,
the momentum dispersion, and relative spectral weights
of the peaks in the single-particle spectral weight and the
momentum distribution (np) of the electrons are in good
agreement with the SDW picture.

In the Hubbard model

H= —t Z (CiTsts + C;scis) + UZ"iTnil’ (1)

(s i
the operator c,Ts creates an electron of spin s on site i and
n;s is the number operator for spin s and site i. For the
simple near-neighbor form of the kinetic energy, the band

energy ep is
gp = —2t[cos(p,) + cos(p,)]. (2)

When U is comparable to or larger than the band-
width 8¢, the spin degrees of freedom are well described
by a spin-1/2 antiferromagnetic Heisenberg Hamiltonian
with an exchange interaction J = 4¢>/U. Here we will
consider the half-filled band {(n;; + n;;) = 1 with U = 8¢.
In this case, for temperatures well below 8¢, local mo-
ments form with \/{(n;; — n;)?) = 0.95. As the tempera-
ture decreases below J, antiferromagnetic correlations
develop and at low temperatures the antiferromagnetic
correlation length grows exponentially. For the tempera-
ture T = 0.125¢, at which we have carried out the Monte
Carlo simulations discussed below, the antiferromagnetic
correlation length is larger than the 12 X 12 lattice we
have used.

The real part of the frequency dependent q = O con-
ductivity is given by the Kubo relation

\X\' ] m
ow) = Ref—%(ﬁu——) 3)
L@Wm lwp—w+16
with
B
Aglioy,) = / dre '“n7 (jx(T)j:r(O». 4)
0

Here w,, is a Matsubara frequency 2mmT, j.(7)=
exp(HT)j, exp(—Hr), and

jx = _iteaz (Cit‘cl'*.\'.\ - le-v-,n('i.\>' (5)

The current-current Green’s function given in Eq. (4)
is evaluated with the usual Monte Carlo method [2,3].
Note that at half filling there is no fermion sign problem.
The analytic continuation in Eq. (3) is carried out using a
maximum entropy procedure [4,5].

The results obtained for o;(w) versus w are shown as
the solid curve in Fig. 1. A clear gap is seen which is
consistent with the vanishing Drude weight discussed in
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FIG. 1. Real part of the frequency dependent conductivity
of a half-filled (n) = 1 Hubbard model with U = 8:. These
results were obtained on a 12 X 12 lattice at a temperature
0.125¢. This set of parameters will be used for all of the
results discussed here. The dotted line is the mean field SDW
result with A = 2.4¢. A finite broadening of I' = 0.5¢ has
been used in plotting the SDW result. The inset shows the
7 dependent current-current correlation function used to obtain
the conductivity.

Ref. [6] and the insulating nature of the half-filled system.
The dotted curve is the mean field SDW result

2 1 g — A?
ol(w) = — Z sinz(p )—-(1 - —
N 5 2 E2

1 - 2f(E
X (—f("—))a(w — 2E,) (6)
Ep
with A = 2.4t and the § function broadened [7]. The zero
temperature mean field SDW gap determined from

U 1
1= = — 7
N > I, )
is equal to 3.6z. When the RPA fluctuations are taken into
account [1], A is reduced to 2.4z.

The mean field result for o(w) given by Eq. (6) is
similar to the BCS expression for a superconductor except
for the change in sign of the A? term and the fact that
A in Eq. (6) is the the spin-density-wave gap. Near
threshold w = 2A, &, vanishes and the coherence factor
-;_—[1 — (82 — A?)/E3] goes to 1. In the superconductor,
this coherence factor vanishes at threshold which accounts
for the absence of a peak in o(w) at w = 2A in the
superconducting case. The f-sum rule for the Hubbard
model has the form

[m do o1(@) = T (k) @®)
0 2

with (k,) the average kinetic energy per site associated
with hopping in the x direction:

(kx) = - Z <Ctt+xscfs + Cgsct’s+xs>~ (9)

The Monte Carlo results give 5(—k,) = 0.77 and the
area under the solid curve in Fig. 1 showing the Monte
Carlo data for o (w) gives 0.74. The small difference re-
flects the difficulty in analytically continuing the numeri-
cal data. The spin-density-wave result

m -7 1f,_ %
5 (ko) = 2N}p:e,,2(1 E,,) (10)

gives 0.85. This approximation overestimates the size
of the kinetic energy, and hence the area under oy(w).
Nevertheless, the simple spin-wave result for o(w) is
similar to the Monte Carlo data.

In order to learn more about the one-electron properties
of this system, we have calculated the single-particle
spectral weight

Alp,w) = —ilm Glp,iwy) an

iw,—w+id

by anaytically continuing the Monte Carlo data with the
maximum entropy technique. Figure 2 shows plots of
A(p, w) versus w for various momentum slices through
the Brillouin zone, and Fig. 3 shows the single-particle
density of states

N = 3 Ap.w). (12)
P

The insulating gap is clearly evident. However, it is
also clear from Fig. 2 that the peak in A(p, w) disperses.
In Fig. 2(a), the spectral weight exhibits two peaks
which disperse symmetrically about @ = 0. The relative
spectral weight shifts from negative to positive energies
as the momentum moves from below (7 /2, 7/2) to above
this value. At the (7 /2, 7/2) point, the spectral weight
is symmetrically distributed. In an ARPES experiment,
only the w = 0 spectral weight is observable. Thus at
first glance, it might appear that the peak in A(p,w)
passed through a “Fermi surface” as the momentum is
changed from (7 /2, 7 /2) to (27 /3,27 /3). However, one
would also see that the zero of energy is displaced from
the peak at (7/2,7/2) by a gap A and in addition a
small peak disperses away from the Fermi energy as the
momentum is increased beyond (/2,7 /2). An angular
resolved bremmstrahlung isochromat spectroscopy (BIS)
experiment would show that as p increases along the
diagonal, spectral weight is transferred to an image peak
lying symmetrically above the Fermi energy. For a
system with only a near-neighbor hopping the spectral
weight is evenly divided for (/2,7 /2) and then shifts
heavily to the BIS side as p increases further. Figures
2(b) and 2(c) show the w variation of the spectral weight
for various values of the momentum p taken along several
additional cuts in the Brillouin zone.

In Fig. 4, the solid points show the position of the peaks
in A(p, w) versus p. Here the solid curves correspond
to the SDW dispersion relation E, = *,/e2 + A2 for
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FIG. 2. Single-particle spectral weight A(p, w) versus w for
various values of p. The inset in each panel shows the
momentum slice through the Brillouin zone. The parameters
are the same as in Fig. 1.

A = 2.4z, while the dotted line shows &p. Note that in the
large U/t > 1 limit, A varies as U/2 so that

Ep = /e + A2 = A + J(cosp, + cospy)? (13)

with J = 4¢2/U. Thus in this limit, the dispersion only
depends upon J. Also in this limit, the kinetic energy of
the half-filled band (k,) varies as t2/U [2] so that the f-
sum rule is also set by J.
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FIG. 3. Single-particle density of states N(w).

It appears that the SDW results provide a quite reason-
able description of the dispersion of the peaks. In addi-
tion, the SDW spectral weight

Alp,w) = %(l - ;—p)ﬁ(w + Ep)
)

L P
+ 5 (1 + Ep)a(w Ep) (14)

provides a natural explanation for the spectal weight
transfer found in the Monte Carlo data. In particular,
the spectral weight for @ = 0 determines the electron
momentum distribution

0
(np) = /_xd(uA(p,w). (15)

In Fig. 5, Monte Carlo results for (n,) are shown as the
solid points and the curve corresponds to the SDW result
(1 = &p/Ep).

Thus it appears that even in the case where U is equal
to the bandwidth 8:, the spin-density-wave picture pro-
vides a useful framework for understanding the electronic
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p

FIG. 4. The solid points correspond to the position Ep of
the peaks in A(p,w) versus p for the same parameters as
in Fig. 1. The dotted line shows the band structure energy
ep = —2t(cosp, + cosp,), while the solid curves correspond to
the SDW result E, = (g2 + A%)'/2.
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FIG. 5. (np) versus momentum. The solid points are obtained
from the Monte Carlo data by integrating A(p,®) over
according to Eq. (15). The curve represents the mean field

result 5 (1 — &,/E,).

properties of the half-filled insulating state of the Hubbard
model. In particular, it provides a reasonable description
of o1(w) and the insulating nature of the system. Fur-
thermore, it gives a single-particle spectral weight which
disperses in the same way as the Monte Carlo data and
in addition exhibits the same shift in the relative spectral
weights of the peaks [8].
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