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Impurities and Quasi-One-Dimensional Transport in a d-Wave Superconductor
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Impurity scattering in the unitary limit produces low-energy quasiparticles with an anisotropic
spectrum in a two-dimensional d-wave superconductor. %e describe a new quasi-one-dimensional limit
of the quasiparticle scattering, which might occur in a superconductor with short coherence length and
with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be
proportional to the normal state scattering time and is impurity dependent. The quasi-one-dimensional
regime will occur in high-T, superconductors above critical impurity concentration. %e argue that the
impurities produce weak orthogonal localization of the quasiparticles.
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The symmetry of the pairing state in high-T, super-
conductors was addressed in some recent experiments on
the T3 dependence of NMR [1], the phase shift by m.

in the Aux dependence of the Josephson current [2], the
linear temperature dependence of the penetration depth

A(T) in single crystals [3],and the strong anisotropy of the
energy gap in angular resolved photoemission [4]. All of
them support d, 2 —y2 symmetry of the gap. Theoretically
the d-wave pairing state is predicted in spin-fluctuation
exchange models [5,6] as well as in models with strong
correlations [7].

It is well known that scalar impurities are pair breakers
in d-wave and any other nontrivial pairing state super-
conductor [8—10]. They produce a finite lifetime of the

quasiparticles in the nodes of the gap, a finite density of
states at low energy, and a finite low frequency conduc-
tivity at low temperatures, ignoring localization effects.
For the special case of a two-dimensional superconductor
with a d-wave gap, a straightforward calculation yields
the surprising result that the dc conductivity o.(co - 0)
is a "universal" number [10], independent of the lifetime
of the quasiparticle (but dependent on the anisotropy ra-

tio of the velocities of the quasiparticle in the node of the

gap) [11]. However, experiments on microwave absorp-
tion in Y-Ba-Cu-0 (YBCO) crystals with Zn impurities

[12] show a linear temperature dependence of the conduc-
tivity and an impurity dependent low--temperature conduc-
tivity. On the other hand, the measured conductivity [12]
appears to be sample dependent and is about an order of
magnitude higher than the predicted value [10]. One has
to wait for settled experimental results to compare them
with theoretical predictions [13].

The purpose of this Letter is to address the role of
strongly scattering disorder with finite potential range
on the dc conductivity at low temperattlres in a short
coherence length superconductor. (i) We will show that
there is a new quasi-one-dimensional regime for the dc

conductivity in superconductors with a short coherence
length g, comparable to the range of the impurity potential
A. The quasiparticle contribution to the dc conductivity is
governed by the self-energy X(to .- 0) = iy —and by
the phase space available for low-energy quasiparticles.
The quasiparticle dispersion is strongly anisotropic in the
vicinity of the nodes in a d-wave superconductor that has

Ek = vl kl + vFk3 and vl vF 50 &F see Flg
We find that the overall contribution to the conductivity
depends on the ratio of the energy of the quasiparticle to
the scattering rate v&A '/y = Ao/y(pF A) ', and we get

FIG. 1. Graphical presentation of the d„,.2 state, where
b, (k) = bo(cosk, a —cosk, a). For clarity the gap function is

only drawn in the neighborhood of one node ko. For calcu-
lational purposes a coordinate system (k&, k3)with the onglll at

ko is used instead of (k, k, ) with the origin at the center of the

Brillouin zone I . They are related by k& = (k, —k,, )/~2, k3 =
(k„+ k, )/~2 —(k[0. The FS denotes the Fermi surface of
the tight-binding band g(k) = —t(cos k, a + cos k~a) —p, . Af-
ter linearization around ko we find A(k) = v, k, , g(k) = vrk, ,

where v&
= —~2doasin(ko, a) and vr = +2ta sin(ko, a). The-

momentum sums performed will be cut off at )k) = 2/A, where
A is the range of the impurity potential.
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For vi A '/y ( 1 the quasiparticle dynamics is essentially
quasi-one-dimensional and the conductivity depends on
the impurity concentration. Our model predicts that the dc
conductivity at low temperature should be proportional to
the scattering time in the normal state and is smaller than
the "universal" limit [10]by a factor vi A '/y ~ 1. This
limit might occur in high-T, superconductors, for which
we estimate A/a —1 —3 and Ap/eF 10 '. In the limit
A

.- 0 Eq. (1) gives the universal dc conductivity, found
in [10]. (ii) We argue that the origin of the strong poten-
tial scattering due to impurities in the high-T, supercon-
ductors is the highly correlated antiferromagnetic nature
of the normal state. The range of the impurity poten-
tial might be of the order of $&FM and thus comparable
to the superconducting coherence length g. Under these
assumptions retaining a ftnite range of the impurity po-
tential is required. (iii) We also discuss the localization
of quasiparticles close to the nodes in a d-wave super-
conductor with scalar impurities. Scalar disorder leads
to a weak orthogonal localization of quasiparticle states
[10,11]. All of the results, presented here, are valid for
any superconductor with nodes in 2D with a Dirac spec-
trum of quasiparticles.

Consider scalar impurities that give rise to the ran-
domly distributed strong scatterers in 2D with a ftnite

range A: (U(r)U(0)) = (g/12m. ) exp( —r /A )
.-tiB(r)

and dispersion q. The assumption of strong potential
scattering off the impurity sites is well accepted for heavy
fermion systems, where the Kondo effect plays an impor-
tant role and thus any scalar impurity might produce the
"Kondo hole" with s-wave scattering phase shift Bp close
to n/2. The same assumption for the high-T, supercon-
ductors seems to be justified by the experiments on Zn
impurities in YBCO, which produce gapless superconduc-
tivity at 3% doping level and strongly change the NMR
linewidth of 63Cu [14]. A possible model describing the
Zn impurities in high-T, was proposed recently [15]. We
therefore assume that scalar impurities are strong scatter-
ers in these superconductors.

The second assumption of a finite range of the impurity
potential is motivated by the observation that the high-
T, superconductors have a substantial antiferromagnetic
coherence length $AFM —3a at the transition temperature.
Thus a scalar impurity will produce distortions in the
magnetic correlations on the range of the g~FM. On
the other hand, the superconducting coherence length
g —20 A. is comparable to this scale, and thus the
range of the potential is finite on the scale relevant for
superconductivity. This point should be contrasted to
the case of heavy-fermion superconductors, where the
coherence length is —102 A, and, therefore, any potential
impurity will have its range substantially shorter than the

coherence length. In that case it is reasonable to use
instead the assumption that the impurity has effectively
zero range. %'e will retain A finite below. As we will
show, this leads to the new parameter viA '/y and a dc
conductivity that is dependent on this parameter.

The Bogoliubov Hamiltonian for quasiparticles in a d-
wave 2D superconductor is

H= dr% r rr3+Arr~+ Urr3+r, 2

where %" = (ct, c&) is the Nambu spinor, 7; are the
Pauli matrices, g(k) = —t(cos k„a + cos k~a) —p
is the energy, counted from the Fermi surface,
A(k) = Ap(cos k„a —cos ki, a) is the d„2—Y2 energy
gap, and U(r) is the impurity potential. For the low-

energy states, we linearize the Hamiltonian in the
vicinity of the node close to the (n./2, n/2) point. We
find h(k) = viki, f(k) = vFk3 in the new coordinates,
defined in Fig. 1 [ 10]. The resulting Dirac-like Hamil-
tonian takes the form

H = dr 'I vFk3 + U r r3 + v~k~r~+. (3)

The self-consistent Green functions are given by

G = [ice„+ g(k)]/D, F = —4(k) /D, (4)

with D = A@2 + g (k) + 32(k), ice„= it@„—X(ice„),
and we ignore the self-energy contribution to the
anomalous Green function from impurity scattering, a
contribution that vanishes upon angular integration [16].
For strong potential scattering impurities the normal
self-energy is given by [17,18]

X(ice„) = I'gp(im„)/[c —gp(ice„)j,

where I' = n;/mNp is the s.cattering rate in the normal
phase, c = cot 60, with momentum-dependent phase
shift Bp(q) = n. /2 Iql ( 2A ', gp(its„) = 4(nNp) ' X

g» G(k, ice„). The factor of 4 in front of the last sum
rejects the number of nodes in the gap, n; is the impurity
concentration, and Np is the density of states at the Fermi
surface. The prime in g stands for the momentum
sum up to the cutoff ~k( ( 2A ', which is implemented
as a "hard" cutoff. This momentum cutoff follows
immediately from the derivation of the self-energy with a
finite range of the potential; see, for example, [18]. We
find from the solution of the Dyson equation that X(ice„)
is also momentum dependent with characteristic range
A ', which will be taken into account in the conductivity
calculation.

The Born scattering limit is recovered from Eq. (5) for
c )) gp(ice„) We are i.nterested in the case of unitary
scattering, for which we take the s-wave phase shift
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Bp = 77/2, c = 0. In this limit the solution of the Eq. (5)
for X,(cu ~ 0) = —iy is

y' = g„(y' + (v)k()' + (vFk3)')
4

The sum over momentum in this equation is logarith-
mically divergent at the upper limit, which is taken as
min(A, Ap/v~) for the k~ integral; the k3 integral is al-

ways cut off by b, p/vF, since vFA ' —eF » y, Ap. We
find for I = g'„[y + (v~k~) + (vFk3)'] '

I = ln b + Ql + b /27rv~vF,

where b = min(2v~A ', b,p)/y. I has two asymptotics:
(1) I = (1/2n v&vF) [1n(dip/y) + O(y/Ap)], for

v&A /y » 1. This limit corresponds to isotropic strong
scattering with no momentum cutoff as A

'
= ~. It has

been investigated previously [10,18,19]. The impurity
self-energy is shown to be y = b,pJn. l'/spin(b, p/I').
We will not further discuss this case.

(2) I = lt '/(n vF)y + (I/2m v~vF)O((2v~A '/y) ),
for v&A /y ~ l. In this case the lifetime is given by

r~
S F~.

8
(8)

To check the self-consistency of the as-
sumption v&A '/y ~ 1 we use Eq. (8) to get
I'(pF A) ~ 8/m Ap —8T, . For an estimated A —2a
the condition for the quasi-one-dimensional regime of
quasiparticle scattering is

I' ~ 8 x 10 25p —2.5 x 10 'T, = 20 K. (9)

this limit is the result of the finite impurity range A [22].
In this limit the scattering rate in the superconducting
state is of the same order as the normal state scattering
rate y —21 —40 K for pFA —6. The finite density
of states N(co ~ 0)/Np = I /hp —n; v, linear in the
impurity concentration, is generated in case (2) as well.

%e now turn to quasiparticle conductivity. %e shall
use the lowest order bubble diagram with self-consistent
Green functions with no vertex corrections [10]. Taking
into account the vertex corrections, which are small for
dominant s-wave scattering, will change the numerical
factor in the expression for conductivity. However,
our main result, i.e., the functional dependence on the
scattering rate and impurity concentration, will remain
unchanged. For dc conductivity we get

e-" 4vF
o (cu 0) =—,g„de [—&,n(~)]

IG"(k, ~) I' +
I
F"(k, e)I", (10)

e-' 16 h

mh m3 mA2I
cr(cv ~ 0) =

where, linearizing the quasiparticle spectrum in the vici-
nity of the nodes (see Fig 1), .G"(k, cu = 0) = y/[y +
(vjk]) + (vFk3) ] F"(k, cu = 0) = 0. The momentum
integral in Eq. (10) yields the final formula Eq. (1) for
T = 0 with O(T2) corrections. This formula holds for
any model of disorder as long as v~ A '/y ~ 1.

For the particular case of disorder considered in Eq. (8),
the conductivity is

It is smaller than the normal state conductivity
o(cu 0)„, , ~

= (e2/mh)eF/I due to the small factor
h/mA eF ~ 1 with A & a. The conductivity is also im-

purity dependent, o. —I ' —n, '~ This .model predicts
that the dc conductivity at low temperatures should be
inversely proportional' to the scattering rate in the normal
state and to the impurity concentration [23].

Within this model the temperature dependence of cr—
T at low temperatures remains unexplained, since we
obtain T2 corrections at low enough temperature (see also

[19]). If it is an intrinsic effect, it indicates an important

physical effect, missing in this simple model.
We shall continent on quasiparticle localization in

the d-wave superconductor (see also [10]). Originally
the problem of weak localization of quasiparticles was

considered for s-wave superconductivity [24].
Here we will show that the linearized Dirac-Bogoliubov

equation in the presence of the impurity potential pre-
serves time reversal (T) symmetry, and thus the weak lo-

calization in this state belongs to the orthogonal univer-

sality class [10,11]. The linearized Bogoliubov equation

(3) takes the form of a Dirac equation with the scalar im-

purity potential U(r) playing the role of the gauge poten-
tial. Although it appears that this Hamiltoman violates T,
this is not the case. Time reversal for electron operators

is defined as Tc = e pep, n, P =L where e p is the

This estimate is to be compared to the typical scattering
rate in clean samples of YBCO I'/T, —5 x 10 '. Fur-
thermore, in the impure samples with quadratic temper-
ature dependence of the penetration depth the estimates
are I /T, —0.1 —1 [20]. At low temperatures T & y with

y(pFA) ~ b,p ~ y the superconductor is in the quasi one-
dimensional regime and remains relatively clean for, say,

pF A —6.
The applicability of the quasi one dimensio-nal v-s the

isotropic regime is governed by the ratio of the respective
i/2

scattering rates y/y —QI /hp pFA = n;, . We conclude
that the pure and the lightly doped d-wave superconduc-
tor with small n; p is always in the isotropic scattering
regime. The concentration of impurities required to pro-
duce quasi one dimen-siona-l scattering depends on Ap and

the range of the potential A: for Zn doped YBCO n; ~—
5% and for impure La&86Sro&4Cu204 n1 p 016% are
required [21].

To explain this effective change of dimensionality we
note that the transverse momentum in the sum in case
(2) is limited by k& ( 2/A and that the quasiparticle
dispersion on such a small scale is irrelevant, compared
to y. The transverse scattering does not contribute
effectively to the conductivity; that is why we call this
case a quasi-one-dimensional limit. The existence of



VOLUME 73, NUMBER 5 PHYSICAL REVIEW LETTERS I AUGUST 1994

antisymmetric tensor. Straightforward calculation yields
for time inversion of the Nambu spinor W = (ct, ct )

T'e = ir2%, 'Te = e'( —i) r . (12)
The Dirac-Bogoliubov Hamiltonian transforms under
T as follows: H = W {[vFk3 + U(r)]r3 + vikiri)

-. W (—ir2)([vFk3 + U(r)]r3 + vikiri)(ir2)W, and

H ~ (—1)H. (13)
Thus the Dirac-Bogoliubov Hamiltonian transforms un-
der time reversal exactly as the energy, which changes
sign under T, and thus time reversal symmetry is pre-
served. This fact also follows from the observation that
the original Bogoliubov Hamiltonian equation (2) for a
d-wave superconductor preserves time reversal in the
presence of scalar impurities. After linearization this sym-
metry should be preserved as well. Thus quasiparticle lo-
calization in the impure d-wave superconductor belongs
to the orthogonal class of universality. Detailed analysis
of this problem will be given elsewhere.

In conclusion, we find a new, quasi one di-men-sional,

regime in the superconducting scattering rate y and in
the conductivity o. for strong impurity scattering. The
highly anisotropic dispersion of the quasiparticle spec-
trum vi/vF kp/EF and finite range of the impurity
potential are crucial for this effect to take place. We
argue that the finite range A of the impurity potential
is the result of the strong antiferromagnetic correlations
$AFM —3a in the normal phase. This effect might oc-
cur in any superconductors with a linear quasiparticle
spectrum in the nodes of the gap. We considered d, 2 Y2

sytntnetry of the gap and find that for a reasonable scat-
tering rate in the normal phase I'/T, ) 0.2, the quasi
one dimension-al regime should occur at some critical
impurity concentration where conductivity at low tem-
peratures o —I' ' —n; ~ is impurity dependent and is
inversely proportional to the normal state scattering rate.
We also show that even in the presence of scalar impuri-
ties, time reversal symmetry in the d-wave superconductor
is preserved and argue that it leads to weak quasiparticle
localization in the orthogonal universality class.
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