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Theory of Surface Diffusion: Crossover from Classical to Quantum Regime
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A theory is developed for adatom diffusion on surfaces, employing the memory function formalism.
The diffusion constant is expressed in terms of static correlation functions which are computed via
Monte Carlo path integrations. Our theory is valid at all temperatures in the high friction limit and
indicates a sharp crossover from the classical Arrhenius regime at high temperatures to the quantum
tunneling regime at low temperatures. Comparisons with experimental data are presented for the
H/Ni(100) system.

PACS numbers: 68.35.Fx, 79.20.Rf, 82.20.Db

The diffusion of light atoms adsorbed on a crystal
surface has been of experimental and theoretical inter-
est over the recent years [1—8]. A unique feature that
has been observed for H/Ni systems [4] is the existence
of a sharp crossover from the classical thermal acti-
vated behavior to the quantum tunneling regime as the
temperature is lowered. When the temperature is high
compared with the adatom parallel vibrational energy
quantum (but still low compared with the energy bar-
rier), diffusion proceeds mainly through thermally acti-
vated jumps between adsorption sites, and the temperature
dependence obeys the well known Arrhenius form. As
the temperature is lowered, there is a sharp crossover to a
temperature independent diffusion regime where the mo-

bility of the adatom is presumably dominated by tunneling
through the barrier. Very recently a theoretical study [8]
of the H/Ni(100) system based on the quantum transition
state theory produced the experimentally observed sharp
crossover behavior but the predicted crossover tempera-
ture and quantum diffusion constant are far away from the
measured data. In this Letter, we present an alternative
theory of adatom diffusion based on the project opera-
tor formalism [9]. We model the system as an adatom

moving in a periodic adsorption potential, coupled to the
substrate vibrational excitations. The coupling results in

frictional damping and random forces acting on the

adatom. The frictional damping destroys the phase co-
herence of the adatom wave functions even at low tem-

peratures and therefore the quantum diffusion proceeds

by incoherent sequence of tunneling through adsorption
potential barriers. Our approach is based on an inverse
friction expansion of the velocity and density autocorrela-
tion functions as detailed in our previous studies of clas-
sical diffusion [10]. In this work, we will examine only
the leading term in this expansion which is valid in the

high friction limit. Our results are valid for all the dif-
ferent temperature regimes. When applied to H/Ni(100),
the crossover behavior and the values of the crossover
temperature and the quantum diffusion constant predicted

by our theory agree well with the experimental data by
Lin and Gomer [4].
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Here K represents the complete set of reciprocal lattice
vector and q a fixed wave vector in the first Brillouin
zone. A = „LA =—-„[H,A]. P—„ is the projection operator
onto vector A„and g„, is the norm matrix of A„,
(A„(K),A„(K) ) = B„„y„„(K,K'). The scalar product of
two arbitrary vectors A and B is defined as the quantum

statistical average

(A, B) =- dXTr[e t'"A'(X)B]

The Hamiltonian for our system is chosen as

p'
H = + V(R) + gM(R, A) up + H h. (1)

2m p

Here m, R, and p are respectively, the mass, displacement
vector, and momentum of the adatom. V(R) is the

periodic adsorption potential. uq is the eigenvector for
the 4th eigenmode of the substrate vibrational excitations
characterized by the harmonic Hamiltonian H~h [11] and

M(R, A) is the coupling coefficient. The scattering of
substrate phonons results in an effective friction which

plays a central role in the diffusion process and destroys
the phase coherence of the adatom wave functions at low
temperatures.

We have already studied the adatom diffusion in the
classical region in detail using the projection operator
formalism [10]. Below, we briefly outline the formalism
with appropriate adaptations so that the theory is extended
to be valid also in the quantum regime. A set of variables
complete in the subspace of adatom dynamics is defined
as
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with Z = Tre t'H the partition function and P = I/kT
the inverse temperature. A(A) = e"HAe ~H is the op-
erator in the Heisenberg representation with imaginary
time AA. The scalar product defined in Eq. (3) cor-
rectly reduces back to its classical counterpart at high
temperatures.

The dynamic correlation functions S„„(K,K', t) =
(A„(K, t), A„(K') ) carry the full information about
adatom diffusion. In particular, the density correlation
functions S(q, cu) = f dte'"'Spp(K = O, K' = O, t) pos-
sesses a diffusive pole in the hydrodynamic regime,
i.e., S(q, cu) —(cu —iDq ) in the (q, cu) ~ 0 limit.
Hence the diffusion constant D can be extracted from the
analytical behavior of the correlation functions.

At this point, we can follow our previous development
of the formalism [11] to show that in the high friction
limit, D is given by the inverse of the memory function
formed from the autocorrelation of random force from
scattering off the substrate excitations, i.e.,

D ' = X() (K = 0, K' = 0, rgp
= 0)

dt g&&' LAi, e' 'LAi g&&'

Here L is the Liouville operator in the Hilbert space
orthogonal to the adatom dynamics subspace. In the
initial value approximation, the memory function can be
expressed as

kT
~ ll (t) q (t) +11 gppgll

with the friction g(t) resulting from the adatom's scatter-
ing off the substrate excitations, given by the expression

pressed in terms of path integrals as

~~ (K, K')

dR P d P
—(Kx(A)

X exp — dgL [R(g)]
)

(7)

/
1

m

1
p(x) = — [dR(A)] exp — did [R(A)] . (9)

Z

In the above equations, f [dR(A)] stands for the imaginary
time path integrations [12]. Each path R(A) starts and
ends at x, i.e., R(0) = R(P) = x. All the x integrations
are defined within one lattice period from 0 to d. The
partition function Z is just the normalization factor for
the density function p(x). X[R(A)] is the Lagrangian
corresponding to the Hamiltonian in Eq. (1). We note that
the major dynamical effects of the coupling of adatom
to phonons has already been included in the friction
term rt(t) In t.he evaluation of the static correlations we
shall neglect the explicit coupling to the phonons in the
Lagrangian except that the bare potential V(R) is replaced
by V, (R) including adiabatic relaxation effects.

With Eqs. (4), (5), (7), and (8), the diffusion constant
can be expressed in terms of path integrals as

D '=
2

— dx dRA

rt(t) = g ~VM(R, A) ~
(u"„(t),u„)

1

mkT
(6)

X dA exp — did [R(A)]pRA ( p )

At this point, we see from Eqs. (4)—(6) that the evalu-
ation of the diffusion constant reduces to the evaluation
of the static correlation functions g~~ and happ (which are
matrices in the indices K, K') as well as the ar = 0 com-
ponent of the friction g —= fp rt(t)dt Afirst prin. ciple
calculation of these quantities require the input of the ad-
sorption potential and the adatom coupling to the substrate
excitations M(R, A), and the substrate vibrational spec-
trum corresponding to Hph in the Hamiltonian described
in Eq. (1). In the absence of detailed knowledge of these
quantities for most adsorption systems, we will adopt an
empirical approach to determine the adsorption potential
and the friction g as detailed below.

The matrices goo and g~~ appearing in the expression
for X~~ are just the static density and momentum den-
sity correlation functions. They can be conveniently ex-

— v.p(x) = —e &'~'&
Z

and the diffusion constant

kT d

mrs f dxe t .&'& f dxe&
(12)

The diffusion constant here has an Arrhenius form for
temperatures much lower than the diffusion barrier and

kT
goes over to the correct free particle behavior D = —„at
temperatures much higher than the barrier.

We first examine this expression in the high temperature

(P 0) classical regime. In this case, the contributions
to the path integral are dominated by a single path R(A) =
x. Then from Eqs. (9) and (10) it is easy to see that one
recovers the classical results [10] for the density function

701



VOLUMEE 73, NUMBER S PHYSICAL REVIE VIEW LETTERS 1 AUGUsT 1994

For lower tern
fes

mperatures, u
est themselves. To corn

d h g
path integrations in E

o proposed

1 fh
t" 'n'nt' Th

uie.
a ure range (70—700 K

We now "'discuss the a 1'app o o e
We have evaluat d h hp g

wo model
e t e ath

'

potentials as

V,'(R) = tl= to i 1.325 —0.947
4mR'"

d

(13)

Both potentials have barri
d = 2494. .".e second oHowever t"

o vp and a e

n potential
one is clo

e
,3]. Thi lt Vp =

We note that the theor ti a aueo
rno ) in the Arr g., 2. mvp. This indicates a

man&- sizable correctionsi ion from the zero
"c assical regime. " zero point motion e

The differenc bf: dm f, n 22meV for V" ' '
m

e
'

energy A, Q/2 (AA, 2 = re zero point e
r, which is corn

we show the tern e
, , respectivel ). I

by consts ant. Our
p rature dep d

results clearl h
en ence of the diffusion

rr enius form to
y s ow a crossover

i usion const
unnelin re

'

ant remains con emperature

b "th ry h
emperature range 100

a ruptness of the cr
e KENT&14

a sorption potent' 1
'

e
wit the

ia are in e

h
11

'
d0 scale of the diffus iiu eorthe

i 100).

moment, there
y the choice of th

i US 1s

ere are conslderabl
i ferent ex

'
era e discre an

'
p og

f""' for 'h' dt e e iffusion const c

friction

assical

1S collnsistent with the h a

o t e

e high friction a
' '

n in
1 h A

of course includes the cont
'

om couplin to

up ing to electronicic excitations.

1"d'd '" th
ic have not been

1"'t""'f h
p

ion potential. It could lead

2

j '0 5

0
C4

0

0.5
0
U)'0

\

1

\
\
\
'I

\
\
1
1
I
1

\
I
1
I
\

'I

\
I
I
I

\
'I

'I

'I

I

I
I
I

/
I
I
I

I
I

I
/

/
/

I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

10

I I

—0. 5 0.5
0. 5

1
1 1 0 5 2

FIG. l.
R/d

Model adso tio
11 od 1 in Eq. (13) ande otnti l

'
an the dashed for the

1 of diffi usion at low tern e
t ot ti l i Eq. (13) and the de dashed line for

702



VOLUME 73, NUMBER 5 PH YS ICAL REVIEW LETTERS 1 AUGUs~ 1994

to substantial renormalization of the mass of the adatom
which could then account for the very weak isotope
effects observed for H/Ni(100). The conventional small
polaron theory would also predict an activation energy
even in the tunneling regime due to lattice relaxation
effects in the tunneling process. However, this activated
tunneling regime only occurs for kT ~ 2h~D with cuD

being the Debye temperature of the substrate (fituo —300
K for Ni) [14,15]. The observed quantum tunneling
regime lies in a temperature region too low for this to
occur. Indeed, even though the lack of isotope effects
suggests a strong adatom phonon coupling for this system,
the temperature dependence of the observed diffusion
constant in the quantum tunneling regime is consistent
with zero activation energy [4]. We are now pursuing the
generalization of the present work including the coupling
to phonons explicitly in the evaluation of the static
correlation functions goo and g~~.

In summary, we have presented a microscopic theory
for the diffusion of an adatom on a crystal surface. The
results are valid for all temperatures in the high friction
limit. In the high temperature regime, the diffusion is
found to conform to a thermal activated Arrhenius form,
but substantial corrections to the barrier from zero point
motion can occur. The diffusion constant crosses over
rather sharply to a constant quantum tunneling limit as the
temperature is decreased below a crossover temperature
determined by the parallel vibrational energy quantum.
When applied to HjNi(100), the theoretical results for
the diffusion constant are in excellent agreement with the
experimental data.
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