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A theory is developed for adatom diffusion on surfaces, employing the memory function formalism.
The diffusion constant is expressed in terms of static correlation functions which are computed via

Monte Carlo path integrations.

Our theory is valid at all temperatures in the high friction limit and

indicates a sharp crossover from the classical Arrhenius regime at high temperatures to the quantum

tunneling regime at low temperatures.
H/Ni(100) system.

PACS numbers: 68.35.Fx, 79.20.Rf, 82.20.Db

The diffusion of light atoms adsorbed on a crystal
surface has been of experimental and theoretical inter-
est over the recent years [1-8]. A unique feature that
has been observed for H/Ni systems [4] is the existence
of a sharp crossover from the classical thermal acti-
vated behavior to the quantum tunneling regime as the
temperature is lowered. When the temperature is high
compared with the adatom parallel vibrational energy
quantum (but still low compared with the energy bar-
rier), diffusion proceeds mainly through thermally acti-
vated jumps between adsorption sites, and the temperature
dependence obeys the well known Arrhenius form. As
the temperature is lowered, there is a sharp crossover to a
temperature independent diffusion regime where the mo-
bility of the adatom is presumably dominated by tunneling
through the barrier. Very recently a theoretical study [8]
of the H/Ni(100) system based on the quantum transition
state theory produced the experimentally observed sharp
crossover behavior but the predicted crossover tempera-
ture and quantum diffusion constant are far away from the
measured data. In this Letter, we present an alternative
theory of adatom diffusion based on the project opera-
tor formalism [9]. We model the system as an adatom
moving in a periodic adsorption potential, coupled to the
substrate vibrational excitations. The coupling results in
frictional damping and random forces acting on the
adatom. The frictional damping destroys the phase co-
herence of the adatom wave functions even at low tem-
peratures and therefore the quantum diffusion proceeds
by incoherent sequence of tunneling through adsorption
potential barriers. Our approach is based on an inverse
friction expansion of the velocity and density autocorrela-
tion functions as detailed in our previous studies of clas-
sical diffusion [10]. In this work, we will examine only
the leading term in this expansion which is valid in the
high friction limit. Our results are valid for all the dif-
ferent temperature regimes. When applied to H/Ni(100),
the crossover behavior and the values of the crossover
temperature and the quantum diffusion constant predicted
by our theory agree well with the experimental data by
Lin and Gomer [4].
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Comparisons with experimental data are presented for the

The Hamiltonian for our system is chosen as

2

H=L"1vR)+SM®R N u, + Hyy. (1)

2m )

Here m, R, and p are respectively, the mass, displacement
vector, and momentum of the adatom. V(R) is the
periodic adsorption potential. u, is the eigenvector for
the Ath eigenmode of the substrate vibrational excitations
characterized by the harmonic Hamiltonian H,;, [11] and
M(R, A) is the coupling coefficient. The scattering of
substrate phonons results in an effective friction which
plays a central role in the diffusion process and destroys
the phase coherence of the adatom wave functions at low
temperatures.

We have already studied the adatom diffusion in the
classical region in detail using the projection operator
formalism [10]. Below, we briefly outline the formalism
with appropriate adaptations so that the theory is extended
to be valid also in the quantum regime. A set of variables
complete in the subspace of adatom dynamics is defined
as

Ag(K) = K=ok,

AK) = (1 = P Lo ook 4 gk L),
2m 2m

(2)

An-‘r—l(K) = <1 - Z Pm)An(K)
m=0

Here K represents the complete set of reciprocal lattice
vector and g a fixed wave vector in the first Brillouin
zone. A=;LA = ;7 [H,A]. P, is the projection operator
onto vector A, and y,, is the norm matrix of A,,
(A (K),Ap(K)) = 8w xnn(K,K'). The scalar product of
two arbitrary vectors A and B is defined as the quantum
statistical average
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with Z = Tre #¥ the partition function and B = 1/kT
the inverse temperature. A(A) = e*”Ae™*# is the op-
erator in the Heisenberg representation with imaginary
time AA. The scalar product defined in Eq. (3) cor-
rectly reduces back to its classical counterpart at high
temperatures.

The dynamic correlation functions S,,(K,K',t) =
(A, (K,1),A,(K')) carry the full information about
adatom diffusion. In particular, the density correlation
functions S(g,w) = [ dte’®'Spo (K = 0,K’ = 0,1) pos-
sesses a diffusive pole in the hydrodynamic regime,
ie., S(g,w) ~ (w — iDg®)”" in the (g, @) — 0 limit.
Hence the diffusion constant D can be extracted from the
analytical behavior of the correlation functions.

At this point, we can follow our previous development
of the formalism [11] to show that in the high friction
limit, D is given by the inverse of the memory function
formed from the autocorrelation of random force from
scattering off the substrate excitations, i.e.,

=3u(K=0K =00 =0)
=f dt {Xl_ll(iAl,eil:tiaAl)Xl_ll}K=0’K/=0 : (4)

Here L is the Liouville operator in the Hilbert space
orthogonal to the adatom dynamics subspace. In the
initial value approximation, the memory function can be
expressed as

kT
() =m0 — X1 XooXx11' (5)

with the friction 7(¢) resulting from the adatom’s scatter-
ing off the substrate excitations, given by the expression

n(1) = ——ZIVM(R A P (@), uy). (6)

At this point, we see from Egs. (4)—(6) that the evalu-
ation of the diffusion constant reduces to the evaluation
of the static correlation functions x;; and ygo (which are
matrices in the indices K, K') as well as the w = 0 com-
ponent of the friction n = [ n(z)dr. A first principle
calculation of these quantities require the input of the ad-
sorption potential and the adatom coupling to the substrate
excitations M(R, A), and the substrate vibrational spec-
trum corresponding to Hpy, in the Hamiltonian described
in Eq. (1). In the absence of detailed knowledge of these
quantities for most adsorption systems, we will adopt an
empirical approach to determine the adsorption potential
and the friction 7 as detailed below.

The matrices yoo and y;; appearing in the expression
for %, are just the static density and momentum den-
sity correlation functions. They can be conveniently ex-

pressed in terms of path integrals as
xoo (K, K')

=% f dx f [dR()«)][% f dAre KA
ﬁ x!
X CXP<_[0 dr L [R(A)])]e""",

O

xu (K, K') = ZIE j dxe " KK p(x), €3]

B

P00 = - [ 1ar)] exp(— / du[R(A)]). ©)
In the above equations, f[dR(A)] stands for the imaginary
time path integrations [12]). Each path R(A) starts and
ends at x, i.e., R(0) = R(B) = x. All the x integrations
are defined within one lattice period from O to d. The
partition function Z is just the normalization factor for
the density function p(x). L[R(A)] is the Lagrangian
corresponding to the Hamiltonian in Eq. (1). We note that
the major dynamical effects of the coupling of adatom
to phonons has already been included in the friction
term 7(z). In the evaluation of the static correlations we
shall neglect the explicit coupling to the phonons in the
Lagrangian except that the bare potential V(R) is replaced
by V,(R) including adiabatic relaxation effects.

With Egs. (4), (5), (7), and (8), the diffusion constant
can be expressed in terms of path integrals as

D! ””’ ! fa’x ()/[dR()«)]

XU [R(A)]exP( f ‘“”R(mﬂ

(10)

We first examine this expression in the high temperature
(B — 0) classical regime. In this case, the contributions
to the path integral are dominated by a single path R(A) =
x. Then from Egs. (9) and (10) it is easy to see that one
recovers the classical results [10] for the density function

1 _
plx) = Z¢ BVa(), (1)
and the diffusion constant
kT d?
D= — . (12)

mmn fd_xe‘pva(x) /dxeﬁva("')

The diffusion constant here has an Arrhenius form for
temperatures much lower than the diffusion barrier and
goes over to the correct free particle behavior D = % at
temperatures much higher than the barrier.
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For lower temperatures, quantum effects start to mani-
fest themselves. To compute the density function p(x)
and the diffusion constant D in this regime, we need to
evaluate the full path integrations in Egs. (9) and (10).
This can be achieved numerically for general values of
temperatures. We have employed the modified Fourier
transform path-integral Monte Carlo method proposed by
Doll et al. [13]. Our simulations were performed with
the explicit inclusion of the first 16 Fourier components
of the path R(A) and a partial average over the remaining
fast components. This yields accurate results for the path
integrals in the entire temperature range (70-700 K) we
studied.

We now discuss the application of the theory to the
H/Ni(100) system. We have evaluated the path integra-
tions for two model adsorption potentials as shown in
Fig. 1. The first one is just a simple cosine potential,
VI(R) = vo[1 — cos(27R/d)], whereas the second one
has a flatter barrier of the form

)

(13)

— 0.379 cos am

VI(R) = v0(1.325 — 0.947 cos 278

Both potentials have barrier equal to 2vy and a period
d = 2.49A. However, the second one is closer to the
adsorption potential determined by the embedded atom
method [8]. The value of vy is chosen such that in
the classical Arrhenius regime, the activation energy E,
agrees with the experimental value (3.2 kcal/mol) of Lin
and Gomer [4] which is consistent with experimental
data by others [2,3]. This results in the value of vy =
80 meV for the choice V! and vy = 81 meV for the
choice V!I. We note that the theoretical value of E; =
140 meV (3.2 kcal/mol) in the Arrhenius regime is
not equal to the classical barrier 2vy. This indicates a
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FIG. 1. Model adsorption potential V,(R). The solid line is

for the model potential in Eq. (13) and the dashed for the
cosine potential.

702

sizable correction from the zero point motion even in the
“classical regime.” The difference between 2vq and E; is
20 meV for V! and 22 meV for V' which is comparable
with the zero point energy A€ /2 (£Q/2 = 22 meV for
VIand £Q/2 = 34 meV for V', respectively). In Fig. 2,
we show the temperature dependence of the diffusion
constant. Our results clearly show a crossover from the
Arrhenius form to the quantum tunneling regime where
the diffusion constant remains constant as the temperature
is further lower. The crossover is more gradual for
the simple cosine potential where the deviation from
Arrhenius form begins at around 200 K and D approaches
a constant only for T < 100 K. For the potential V! with
a flatter barrier, the crossover is very sharp and occurs in
the narrow temperature range 100 K < 7 < 140 K. The
abruptness of the crossover and the crossover temperature
for this choice of the adsorption potential are in excellent
agreement with the experimental observation of Lin and
Gomer [4] for the adsorption system H/Ni(100). The
overall magnitude or the scale of the diffusion constant is
determined by the choice of the friction parameter. At the
moment, there are considerable discrepancies among the
different experimental groups regarding the value of
the prefactor for the diffusion constant in the classical
regime. Accordingly, we estimate that the value of the
friction 7 could range between 1 < n/Q =< 600. This
is consistent with the high friction approximation in
our theoretical approach. An empirical estimate of 7
of course includes the contribution from coupling to
substrate vibrational excitations [cf. Eq. (6)] as well as
that from coupling to electronic excitations.

Now we consider polaronic effects which have not been
included in this work explicitly other than the implicit
renormalization of the adsorption potential. It could lead
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FIG. 2. Diffusion constant D/D; of H on Ni(100). D7y is the

constant value of diffusion at low temperatures. The solid line
is for adsorption potential in Eq. (13) and the dashed line for
the cosine potential.
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to substantial renormalization of the mass of the adatom
which could then account for the very weak isotope
effects observed for H/Ni(100). The conventional small
polaron theory would also predict an activation energy
even in the tunneling regime due to lattice relaxation
effects in the tunneling process. However, this activated
tunneling regime only occurs for kT > %ﬁwD with wp
being the Debye temperature of the substrate (Awp ~ 300
K for Ni) [14,15]. The observed quantum tunneling
regime lies in a temperature region too low for this to
occur. Indeed, even though the lack of isotope effects
suggests a strong adatom phonon coupling for this system,
the temperature dependence of the observed diffusion
constant in the quantum tunneling regime is consistent
with zero activation energy [4]. We are now pursuing the
generalization of the present work including the coupling
to phonons explicitly in the evaluation of the static
correlation functions ygo and yi;.

In summary, we have presented a microscopic theory
for the diffusion of an adatom on a crystal surface. The
results are valid for all temperatures in the high friction
limit. In the high temperature regime, the diffusion is
found to conform to a thermal activated Arrhenius form,
but substantial corrections to the barrier from zero point
motion can occur. The diffusion constant crosses over
rather sharply to a constant quantum tunneling limit as the
temperature is decreased below a crossover temperature
determined by the parallel vibrational energy quantum.
When applied to H/Ni(100), the theoretical results for
the diffusion constant are in excellent agreement with the
experimental data.
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