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Laser Starting from Noise
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We study the time structure, the frequency composition, and the shot to shot fluctuations of the
radiation emitted by a free-electron laser starting from shot noise in the electron beam longitudinal
distribution, taking into account slippage and finite bunch length effects. We find a very difkrent
behavior when the bunch length, Eg, is much longer than the cooperation length, E„orof the order of
a few 8, . The field evolution is dominated by slippage eÃects in both cases, and shows the presence
of superradiant spikes.

PACS numbers: 41.60.Cr, 42.60.Jf

In this paper we study the evolution of the radiation
intensity and the spectral characteristics of a high-gain
free-electron laser operating in the self-amplified sponta-
neous emission mode (SASE) [1], i.e. , starting from noise
in the initial electron beam longitudinal density distribu-
tion. This problem is important for the development of
extreme UV FELs, such as the soft x-ray FEL proposed
recently by a SLAC-UCLA-LBL-LLNL Collaboration [2].
This evolution determines the undulator length needed
to reach saturation, and also the characteristic spectral
width, intensity, and intensity fluctuations. These are
important parameters, determining the possibility of us-

ing the FEL in a new wavelength region, for experiments
such as single shot x-ray imaging of biological samples.

The FEL startup from noise has been studied before

[3—6] in the limit of infinitely long bunches. Here we

generalize the 1D theory to include "short" and "long"

bunches effects, introducing as the important parameter
the ratio between the bunch length, E'b, and the coopera-
tion length, E,.

The problem under study is characterized by several
characteristic scale lengths: the electron bunch length,
the gain length, and the cooperation length. An impor-
tant parameter determining the evolution of the system
is the ratio of lg to E', . When this ratio is larger than
2m, long bunch case, we recover the results of the pre-
vious authors for the undulator saturation length and

linewidth, and we also have new results: the evaluation
of the saturation length fluctuations and the intensity
fluctuations, as well as the study of the temporal and
frequency structure of the radiated pulse. In particular
we show that although the linewidth at saturation is of
the order of the FEL parameter, p, or the inverse of the
number of undulator periods [3,5], the radiation pulse
contains many spikes, each one having a maximum du-

ration corresponding to about 2vrE„with large intensity
fluctuations. If the ratio of Sg to E, is smaller than 2x,
short bunch case, the saturation length tends to be some-

what longer than in the long bunch case. One single ra-

diation pulse is present in this case, with no inner spikes.

A(z, zi) = d(bo(z —()G(z () (2)

inside the beam (0 ( zi ( Eb), and

The fluctuations levels are much larger than in the long
bunch case. In both cases one can observe superradiant
behavior for sufficiently long undulators.

We consider here the one dimensional linear model in

the universal scaling of Refs. [7,8],
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In these equations z = z/E~, zi = —c(t —z/v~~)/E, ,

where z is the coordinate along the undulator axis, zi
is the scaled position along the bunch, v~~ is the elec-
tron velocity in the z direction, and lg = A~/47rp and
I., = A, /4vrp are the gain length and the cooperation
length, respectively. The other quantities are A, wig-

gler period; A, = 2vr/k„radiation wavelength which
satisfies the resonance relation k, = 2k~7oz/(1+ a );
A = Eo/(47rmcz7rin, p) i/2, dimensionless field amplitude,
with mc27a, average initial electron energy, n, = I/eccr,
beam density, I, electron current, a. , beam cross sec-
tion; b = N& Q "i exp (—i8&), bunching parameter,
with e~ = (k~ + k, )z —ck, t~, electron phase, and Np,
number of electrons within a longitudinal distance equal
to A, ; p = (1/7a)(a ~o„/4ck~)z/s, fundamental FEL pa-
rameter [1], with u„= (4vrezn, /m) t/z, plasma frequency
and a = eB /mc~k~, wiggler parameter. Equations (1)
have been obtained linearizing the Compton FEL equa-
tions [1], around the equilibrium condition with no field,
unbunched, uniform density and monoenergetic electron
beam, and describe the exponential growth of the si~;ual.

in the high-gain regime before saturation.
We solve the system to describe the onset of the FEL

process from random noise on the phases bo(zi) of a mo-

noenergetic electron beam injected in the undulator. For
a flattop electron beam of finite length Eb = Es/E„with
the trailing edge at zi = 0, the solution of Eqs. (1) is

given by
Z1
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A(z, zi) = d( bp (lb —()G(z + lg —zi, (), (3)

in front of the beam (lb & zi & li, + z). The solution (3)
is simply the inner solution (2) propagated outside of the
leading edge of the bunch.

The solution is a convolution between the initial per-
turbation bp(zi) and the Green function G(z, zi), which

vanishes for zq o z and whose Fourier transform is given

by

~i%, (u)s
G(z, z) = i)—'

j=1
(4)

and A~ (2), j = 1, 2, 3, are the solutions of the cubic equa-
tion As —uA~ + 1 = 0, where u = (k —k, )/2pk, . In the
limit of a beam much longer than the slippage between
the radiation and the electrons in the wiggler, Eb » z
(i.e., lb » N~A, ), neglecting the radiation escaped from
the leading edge of the beam and the slippage region at
the trailing edge, we can write an approximate expression
for the emitted radiation spectrum [3,4):

A(z, ~) = bp (u)G(z, ur),

where bp(8) is the Fourier transform of the initial bunch-

ing bp(zi), which describes the SASE regime [4].
The function G(z, zi) can be evaluated asymptotically,

for 0 & zi & z, as ~G] e ~~~~ l where

y = ~zq(z —zi) [7,8]. The maximum of this expres-
sion, as a function of zi, occurs at zi = z/3, where y
is maximum, and its width is proportional to ~z. This
solution describes a wave packet moving at a constant
velocity v, = 3v~~/(2 + v~~/c), with a peak growing as

(1/4mz) exp(~3»). From expression (2) it is possible to
demonstrate the superradiant nature of the spikes grow-

ing from the noise nonuniformities on the bunch. We
specialize bp(zi) for the case of a short (compared to
l,) initial perturbation on the bunch of width 6 (in
units l, ), of average value bp Express. ion (2) leads to
A(z, zi) = bpEG(z, zi), hence ~A(z, zi)~ oc 6 oc p,
that is, the emitted intensity from the short perturba-
tion is superradiant [9]. In the case of a more complex
structure of the initial noise, the field will be a superpo-
sition of superradiant spikes.

In the high-gain limit, z )& 1, the root of the cubic dis-
persion relation with negative imaginary part gives rise
to an exponential growing spectral intensity proportional
to exp[2~1mA(2) ~z]. The imaginary part of the complex
root ]ImA(2)

~

is zero for u & (27/4) i~s = 1.89; it can be
approximated as ~lmA~ ~3/2(1 —u /9) near resonance
(~ = o) and it decreases as 1/g]~] for large negative
values of cu. Studying the behavior of the spectrum near
~ = 0, we can write ]G(z, ~)]z 9 exp(~3z —22/2o2),
where o2 = 9/2v 3»: hence, the FWHM of the envelope
of the observed spectrum for undulator longer than one
gaia length l~ shrinks as 1/~z along the wiggler [3,4].

We consider now the SASK regime, with the
emission starting from the noise term bp(zi)

N& Q "iexp( —i8&p), where 8&p are the random elec-

tron phases at the entrance of the wiggler. The average
emitted power, in dirnensionless units, is defined as

1

gb

&b+&

dzi(]Ai ) = =
gb

d (IAI')

(6)

where Ng. = N~(l, /A, ) is the number of electrons in a
cooperation length l, . Expression (7) agrees with the
results derived previously [3,4] for continuous electron
beams. Since bp(zi) can be thought of, in the long bunch

case, as a sum of random delta functions and G(z, zi) has
a full temporal width of the order of 2ml„Eq. (2) states
that the temporal structure of the radiation pulse is a
random superposition of many spikes, with a maximum

peak to peak distance 2vrS, . These results are obtained
also from the numerical model, as shown in Figs. 1(b)
and 1(c).

From (7) it is possible to evaluate the saturation length
of Eg. Since, in the long bunch case, El, at the usual
steady-state saturation reaches a value close to 1, i.e.,

P„, pPb„, for N~ 1/p, or, in scaled units, for
z = 4ir, from Eq. (7) we can evaluate the saturation
length as z, ~ ln 12m3 / Ng, 2.25+ ~ lnNg, .
This estimate is in good agreement with the simulations.

Conversely, in the short bunch case, Sb & 2vrE„ it is
possible to neglect the radiation inside the bunch, due
to the strong slippage, and it is easy to see that the field

given by Eq. (3) is a smooth function of zi, since the ran-
domness of bo has been integrated over the bunch. It fol-

lows that a single smooth superradiant pulse is emitted,
as can be observed in Fig. 1(a). To evaluate expression

(6) in this limit, we neglect again the inner part of the
field, (2), with respect to the part of the field propagated

where the angular brackets denote the ensemble average,

EI. = P,„,/pPb„, where P,„, is the average emitted

power and R,„=mc ppI/e is the electron beam power.
The last part of Eq. (6) holds in a limit of a long bunch,
neglecting the contributions of Eq. (3).

As discussed previously, the function ~G] has a band-
width Ak 1/l„whereas the noise power, proportional
to (~bp] ), is a superposition of random spikes with a
width Ak oc 1/lb over a range of frequencies of width

equal to the reciprocal of the noise correlation length,

1/A, . Since bp(2) is the Fourier transform of bp(»i), and

(~bp(zi)
~ ) = 1/Np, we have that A2(~bp(ur)

~ ) lg/Np.
In the high-gain long bunch regime, lb » 2+l„ the

bandwidth of G contains many random spikes; we can
assume Ak = 1/A, (i.e., A2 = 1/2p) and evaluate (6):

EI.(z) = 1 ~3s
3/47r+3» Ng.
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FIG. 1. Results of the numerical model: temporal structure
of the radiated pulse, [A[ vs zq, at the first saturation, for
three values of the electron bunch length, at z = 148~ and for

([be[ ) = 10: (a) Eb = 5E„(b) Eb = 208„and (c) lb = 508, .
The temporal scale is in units of zq = (z —vIIt)/E, .

out of the leading edge, (3). An asymptotic evaluation
of El. leads to the following approximated expression:

,s~slv»l"'

12 v 3N„( /2) /

where y = ~Ebz We n. ote that El, does not experience
an exponential growth with respect to S and that the
growth rate depends on the bunch length as ~Eh

In the short bunch limit it is possible to demonstrate

[8] that, at saturation, P~, = pPb, ~ grab/8, oc n,
This can be shown analytically from the superradiant
self-similar solution, described in Ref. [8], and by the
following intuitive argument: The average power can be
approximated by the product of the peak power, [A] oc

(Eb/l, ), and the width, Azq oc (E,/Ib) /, divided by the
scaled bunch length Eb/E„so that Er, —QEb/E, . From

(8), imposing that EL, = P, ,/pPb„/Eb/E, we can
see that the saturation length scales as z, gE, /Ib

In the long bunch case, after the usual steady-state sat-
uration (Ei, 1), Er, continues to increase (see Fig. 2),
due to the growth of the superradiant spikes emitted by
the electron bunch, up to a second saturation value. This
second saturation value scales, as in the short bunch case,
as n, , since the peak intensity of the spikes is propor-3/2

tional to n, and their time duration is proportional to
1/~n, [8].

We have used the 1D time dependent numerical model
previously employed for the study of superradiance in
the free-electron laser (see Ref. [10]), where the proper
slippage between the electron bunch and the radiation
pulse is taken into account. The electron beam is "sam-
pled" at each radiation wavelength, where the shot noise
in the electron phases is generated through a simple al-

gorithm. The simulation electrons are first spaced uni-

formly along the radiation wavelength; then their posi-
tion is perturbed by a small random amount, distributed
with a Gaussian probability of width 6 [11,12]. The pa-
rameter 6 is determined by the requirement on the initial
average bunching along the electron beam, ([be[ ). Im-

posing that ([be[ ) = 1/N~, the parameter 6 turns out
to be 6 = gn/Ng, where n is the number of simulation
electrons in each radiation wavelength.
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FIG. 2. Long bunch case, Eg = 100k, . Average emitted
power as a function of the dimensionless distance along the
wiggler, z = z/Eg, showing the first and second saturation
values.
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FIG. 3. Spectrum of the radiated pulses, for the same cases
of Fig. 1; here 2 = A~/2p~.

We consider the long pulse limit. In the time domain,
the noisy pattern of the electron bunching along the beam
leads to a superradiant spiking in the radiation pulse.
The initial irregular spiking, seeded by nonuniformities
on the scale of a radiation wavelength, cleans up and
tends to a more regular pattern, with the occurrence of
one spike every 2' cooperation lengths. Hence, due to
this "intrinsic distance" of the superradiant spikes, no
more than one spike can develop every 2vrf„as shown in

Fig. 1 for three different pulse lengths. The position of
the spikes, however, is random and depends strongly on
the initial noise pattern bo(zq). Each spike exhibits the
superradiant scaling of intensity as the square density of
the electron beam, as has been numerically tested. If the
pulse is shorter than or of the order of 27rE„only one
"clean" spike occurs, as can be seen in Figs. 1 and 3.

For small undulator lengths we have found that the
spectral bandwidth shrinks as 1/N, in agreement with
the undulator radiation spectrum width [13]. In the high-

gain region the envelope reaches the well known band-
width [3,5] Ak/k, = 2p, i.e. , Ak = 2k, p = 1/f.„as
one expects from the Fourier transform of the temporal
structure described above. If Eg & 2vrE„ the spectrum is

composed by a single line, as shown in Fig. 3(a).
Only the smooth envelope has been the object of most

of the previous theories (see Refs. [3,5]), even if a prelim-
inary work on the frequency spiking for infinite electron
bunches can be found in Ref. [14). In order to model
correctly this spiking behavior, it is necessary to take
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FIG. 4. Shot to shot fluctuations. Fluctuation of the satu-
ration length as a function of I/V Ib/I,

properly into account not only the slippage between the
radiation and electron pulses, but also the finite bunch
length, which implies the cleaning up of the pulses.

EI. (the average emitted power over the whole radia-
tion pulse) grows exponentially along the wiggler, up to
a saturation value near to the usual pPb„~, as can be
seen in Fig. 2. However, after this first saturation, un-
like the previous theories, it continues to increase up to
a second saturation value, even for a long bunch. This
behavior can be explained qualitatively by the superra-
diant character of the spiking starting from noise. In
fact, as discussed in Ref. [9], a single spike slipping over
fresh electrons continues to grow and narrow without
trapping the electrons and extracting energy from them
with large eSciency. However, the superradiant spikes
generated from noise stop growing when they slip over
electrons that have already interacted with previous ra-
diation spikes that have left them with a large amount of
energy spread.

Our numerical analysis allows us to make an estimate
of the shot to shot fluctuations in the initial electron
bunching on the saturation length for Ei, . In particular,
we kept the same average initial value of the bunching
on the initial pulse for a series of simulations performed
with different random seeds. Since the superradiant evo-
lution has a "coherence length" given by E„Er, can be
thought of as an average over Et, /E, statistically indepen-
dent processes. With this statistical assumption the fluc-
tuations in the physically interesting quantities, as the
saturation length and the saturated power, should de-
pend as I/gE&/E„ i.e. , as the inverse square root of the
statistically independent regions of the electron bunch.
A numerical test has confirmed this dependence and is
shown in Fig. 4 for the fluctuations in the saturation
length. Each point of this figure indicates the amplitude
of rms fluctuations relative to a series of 100 runs with
a given beam length, but different seeds for the random
number generator. Because of this fact the shot to shot
fluctuations can vary from several gain lengths in the
short bunch regime to a fraction of a gain length in the
long bunch regime. This issue may prove important for
the design of future RF linac based x ray FELs. The cur-
rent parameters for the SLAC Collaboration range from

a value of /b/E, 400 at 4 nm to a value smaller than 10
for the proposed test facility at 80—240 nm.

The shot to shot fluctuations in each one of the statis-
tically independent regions of the electron beam, in the
exponential regime, can be easily interpreted in terms
of the fluctuations in the initial noise power Po oc ]bp[

Since we have assumed a Gaussian distribution, the rel-
ative fluctuation 6'Po/Po will be approximately equal

to 1. From this fact and the exponential law P(z)
Po exp(+Sz), it follows that the emitted power fluctua-
tion 6P/P is of the order of 1. Furthermore, bPo/Po —1

implies bz, t 1, or bz, t, l~; that is, the saturation
length fluctuations for each statistically independent por-
tion of the bunch are of the order of the gain length.

In this Letter we have used a model to describe the
FEL startup process from the random noise in the par-
ticle phases. The main characteristics of the emitted ra-

diation, in both the time and frequency domains, are
analyzed for the case of short and long (with respect to
the cooperation length) electron bunches. In both cases
the system exhibits a superradiant evolution seeded by
the shot noise nonuniformities of the electron beam. The
usual steady-state behavior for long bunches is shown

only by the average emitted power, whereas the struc-
ture of the pulses is dominated by a random pattern
of superradiant spikes. An analysis of the shot to shot
fluctuations of the output power and saturation length
shows that the fluctuations tend to be sma11 in the long
bunch regime, whereas they can be huge in the short
pulse case, reaching the same order of magnitude of the
average value of the observable.
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