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Dislocation Screening and the Brittle-to-Ductile Transition: A Kosterlitz-Thouless
Type Instability
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We propose a new model for the brittle-to-ductile transition based on the Kosterlitz-Thouless concept

of dislocation screening.

In this model, thermal fluctuations assisted by the applied stress drive the

spontaneous generation of dislocations and the instability occurs well below the melting temperature.
In the limit of zero stress, our model reduces to the Kosterlitz-Thouless theory of the melting transition,
and, in the opposite limit of zero temperature, we obtain the Rice-Thomson result for the brittle-to-

ductile transition.

PACS numbers: 62.20.Fe, 46.30.Nz, 61.72.Lk, 62.20.Mk

The brittle-to-ductile transition (BDT) is a classic phe-
nomenon exhibited by almost all materials with the possi-
ble exception of fcc metals. The change in the fracture be-
havior from brittle cleavage to ductile failure occurs usu-
ally in a narrow range of temperature accompanied by a
dramatic increase in the fracture toughness [1] and a con-
comitant large increase in the dislocation density [2]. In
materials with low initial dislocation density (e.g., Si [2]),
the crossover is sharp (<5°) and the transition temperature
(T.) is roughly half of the melting temperature, whereas,
in steels with high initial dislocation density, the transition
is more gradual (<30°) and occurs below room tempera-
ture [1]. T, is generally a function of the applied rate of
stress intensity and its variation can be correlated with the
temperature dependence of dislocation mobility in certain
materials [2,3]. The massive dislocation generation at 7
is a necessary condition for the BDT. The strain-rate de-
pendence of this behavior is an additional distinct feature
associated with the transition.

In the existing models, the BDT is viewed either as
a competition between crack propagation and thermally
activated generation of a single dislocation at the crack
tip [3—-6] or as a thermally activated generation of a sin-
gle dislocation mobility-controlled dynamical process [7].
The former describes the aspect of dislocation generation
only while the latter considers the strain-rate dependence
of T, assuming dislocation generation to be possible. The
physical understanding of the phenomenon, however, re-
mains incomplete because a thermally activated mecha-
nism of dislocation generation or mobility does not lead
to a sudden well-defined transition at a characteristic tem-
perature with a dramatic increase in the fracture toughness
without imposing ad hoc conditions [6,7].

We propose here a model based on a new and differ-
ent approach to the spontaneous generation of disloca-
tions leading to the BDT. Unlike the traditional methods,
which describe the stress-induced instability at zero tem-
perature of a single dislocation loop at the crack tip, we
consider the thermally induced instability of many small
loops in the presence of an applied stress. The creation

of many atomic-size loops by thermal activation induced
a temperature-dependent cooperative screening effect that
enhances the subsequent growth of the loops. This effect
is physically distinct from the usual dislocation shielding
of the crack tip stress [8]. We discuss the mechanism
of cooperative dislocation generation in this paper. Else-
where we derive analytical “similarity” solutions that de-
scribe the dislocation dynamics in the vicinity of the crack
tip. The characteristic strain-rate dependence of 7. can
then be deduced by combining the dynamical solutions
with the criterion for instability obtained below.

The concept of dislocation screening was originally
introduced by Kosterlitz and Thouless (K-T) [9] in an
entirely different context, namely, two-dimensional (2D)
phase transitions. In the K-T theory, the unstable gen-
eration of dislocations is driven by thermal fluctuations
only, without the aid of an applied stress. It occurs
close to the melting temperature and gives rise to a
dislocation-mediated melting transition [10,11]. In our
model, both the external stress and thermal fluctuations
assist the growth of dislocation loops. This procedures
a K-T type instability (but not a phase transition in the
thermodynamic sense) well below the melting tempera-
ture at a stress level corresponding to the Griffith thresh-
old needed for brittle crack propagation. This temperature
corresponds to the BDT. We recover the familiar Rice-
Thomson result [4] for dislocation generation in the limit
of zero transition temperature when the applied load is
equal to the Griffith threshold. We obtain the condition
for the BDT using a simple 2D model. Our approach is
applicable to intrinsically brittle materials with low initial
dislocation density and the predicted values of 7. are in
good agreement with observations.

The concept of screening is closely related to the
fact that dislocation loops with radii slightly bigger than
the (dislocation) core radius (ry) can actually be formed
by thermal activation at finite temperature in all solids
[9]. The probability of existence of atomic-size loops or
dipoles in 2D (which represent metastable “topological”
defects) at a given temperature is determined only by
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the energy of the loops. Hence, loops and dipoles of
such sizes as can be formed by thermal fluctuations will
always exist in a solid at a given temperature. The
loops grow on average with increasing temperature and/
or stress until an unstable configuration is reached beyond
which they can expand freely and give rise to ductile
behavior. The equivalent description in 2D, which we
shall henceforth adopt, is the dissociation of dipoles at the
instability, causing a large increase in the density of “free”
dislocations.

The creation of the dipoles induces in the medium a
certain amount of plastic strain in addition to the elastic
strain due to the applied loads. If the response of the
medium to the applied stress is measured in terms of
the total strain (as opposed to the purely elastic strain),
then the increase due to the plastic component gives
rise to an “effective shear modulus” (or susceptibility).
This property is a good probe to distinguish between the
elastic and plastic response since the effective modulus
vanishes (or the susceptibility diverges) when plastic flow
begins. The effective property differs very little from the
normal definition well below T, if one considers just a
few existing dipoles. However, a cumulative effect is
produced as the temperature is increased, because the
presence of a few dipoles helps to nucleate more dipoles.
This cooperative effect occurs due to the reduction in
the self-energy of dipoles owing to the decrease in the
effective modulus, caused by the plastic strain induced by
dipoles of smaller separations.

The concept of the effective modulus can also be
understood in terms of the total energy of a stressed
elastic solid containing a small concentration of bound
dislocation dipoles at finite temperature. The energy of
the system can be expressed as U° + U¢ + U™ [12],
where U° is the elastic energy of the body without
the dislocations, U? is the self-energy of the dipoles
(calculated using the elastic strain fields of the inter-
acting pair of dislocations forming the dipole), and
U™ represents the “interaction” energy between the
dislocation displacement fields and the applied tractions.
This last term is nonzero when the dipoles are formed
after the external loads have already been applied and
gives rise to the well-known Peach-Koehler force. (In
writing the total energy, we have ignored higher order
contributions such as the dipole-dipole interactions.) In
the K-T theory, the U™ term is rewritten in terms of
U° and U“ by defining renormalized or effective moduli
[11]. This identification is useful because instead of
treating the effect of all fluctuations explicitly, it is
sufficient to consider a test dipole of separation r and
treat the effect of all dipoles with separation less than
r (which are more numerous) by defining a scale-
dependent susceptibility. The latter gives rise to a
“screened” interaction between the dislocation pair
with opposite Burgers vector forming the test dipole,
effectively lowering its self-energy [13]. The divergence

of the susceptibility at a certain temperature and stress
signals the spontaneous dissociation of dipole fluctuations
resulting in plastic flow.

We have so far discussed the homogeneous generation
of dislocations leading to the BDT without taking into
account the role of the crack. It is well known that the
emission of dislocations should necessarily occur at the
crack tip in order to blunt the crack [4]. The region
of high stresses near the crack tip makes the latter a
naturally favorable site for the spontaneous generation of
dislocations.

Consider a dislocation-free elastic solid containing a
sharp crack with traction-free surfaces loaded in mode
I. Let o be the shear stress acting on a slip plane
that is assumed to be coincident with the crack plane
for convenience. At finite temperature, there is a small
concentration of bound dislocation dipoles generated by
thermal activation. In the presence of an applied stress
each dipole is in a metastable equilibrium [14]. Hence,
a nonzero density of free dislocations exists in the
thermodynamic limit even at low temperatures. We
assume that this density is small and identify the BDT
as caused mainly by the cooperative unstable dissociation
of dipoles that leads to a rapid increase in the density
of free dislocations. The main approximation in the K-T
theory and in our model is the requirement of low initial
dipole density which is the case when the core energy
E. is large. It is then sufficient to retain in the partition
function only terms of the order of exp(—2E./kgT). This
approximation is particularly appropriate for highly brittle
materials in which dislocations are known to possess
narrow cores with large core energies.

The energy of an “unscreened” test dipole of separation
r in an isotropic medium is [10,13]

U(r) = 24> ln(rL> + 2E. — obr, )
0

where g2 = [oBo/(po + Bo)]1b%/2m =[po/(1 — v)]b?/
47, uo and By are two-dimensional shear and bulk
moduli in the absence of dislocations, v represents
Poisson’s ratio, b, ro, and E. represent the Burgers
vector, core radius, and core energy of the dislocation,
respectively. (The two-dimensional elastic constants
and stresses are in units of N/m.) We follow the same
procedure as in [9,10] and introduce a scale-dependent
polarizability (r) to take into account the screening
due to all dipoles of separation smaller than r. The
force between the dislocations comprising the test dipole
is then 2g%/re(r) instead of 2g%/r. &(r) is related to
the susceptibility x(r) by e(r) =1 + 47 x(r). Using
a continuum approximation to treat the smaller dipoles,
we can write x(r) = [} [ n(r"Ya(r')r' dr' d6. Here,
a(r) is the polarizability of a dipole of separation r at
temperature T in the limit of zero stress and hence is the
same as in the K-T theory; n(r) is the number of pairs of
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separation r at finite o and 7. Defining B8 = 1/kgT, the
expressions for a and »n are similar to those in [9]:

alr) = __ﬁq2~r*’

n(r) = %exp[—ZBE(. - BV(r) + oBbr], (2
0

V(r) = 2q2f r’izr’)'

Using Eq. (2) in the definition of the susceptibility we
obtain a complicated integral equation for £(r) which has
to be solved self-consistently. The determination of the
critical radius (r.) and temperature (T.) beyond which &(r)
increases rapidly is facilitated by transforming the integral
equation to a set of coupled nonlinear equations [10]. Let
us define

= 1n(i), ny — L4

me(r)’

(3)

y() = (fjexp(—wq - ﬁg(r) + Babr)

The function y(/) is related to the probability of existence
of dislocations at a given T and o while h(l) represents the
screening due to dipoles of separation less than rgexp (/).
Differentiating the expression for &(r), and using Eq. (3),
we obtain (to first order in y) a set of “renormalization
transformation” equations,

dh™'(1) _ 3.2 dy
ar ATy

subject to the boundary conditions (! = 0) = 8¢*/m7 and
y(l = 0) = exp(=BE. + aBbry/2m).

In the presence of stress, we obtain a nonautonomous
system of coupled nonlinear equations describing the
scaling behavior of thermally nucleated dipoles, unlike
the autonomous set (the K-T equations) obtained in the
absence of stress [10,13]. At low temperatures h(l) is
large and, therefore, dy/dl is negative for small values of
o. However, when o is of the order of the theoretical
shear strength (24%2/b2), dy/dl changes sign, reflecting
the fact that homogeneous nucleation of dislocations is
possible at all temperatures when the applied stress is
very large. This scenario is not relevant to the BDT
as the theoretical shear strength is usually larger than
the Griffith threshold so that cleavage occurs before
spontaneous emission of dislocations. In order to make
the analysis simpler, we approximate the last term in
Eq. (4) by Bobr'/2, where r' is a constant for a given
temperature representing the average size of the dipoles.
The error introduced is small since both r and r’ do not
differ much from ry at low stresses.

Let us henceforth consider the stress to be a constant,
smaller than the theoretical shear strength. Then there is
a critical temperature B, corresponding to r’ = r. such

Bobr
2

P T AT
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that 2 + B.obr./2 = wh. and dy/dl = 0. Above this
temperature, both y and 47! increase rapidly due to the
spontaneous dissociation of thermally induced dipoles.
The rapid increase in the free dislocation density occurs
at the temperature

1 q° obr,
T. = — - e
¢ 2kgp (8(!}) 2 ) )

When o = 0, the result in Eq. (5) is the same as that
obtained in the K-T theory [10] where it corresponds to
a true fixed point of the renormalization equations. We
can also recover the well-known Rice-Thomson result
[4] for the stress-induced instability of a single dipole
at zero transition temperature by equating 7. = 0 and
e(r.) = 1 since there is no screening effect when only
one dipole is present. We obtain o, = uob/27(1 — v)r,.
which is the critical stress for homogenous nucleation of
free dislocations. The emission occurs preferentially at
the crack tip due to the stress concentration. If K, is
the elastic stress intensity factor [15] then the stress on
a critical dipole in the vicinity of the tip is K;/\/27r,
and spontaneous dissociation occurs when this equals
pob/2mw(1 — v)r.. We can eliminate K; by assuming
the fracture load to be given by the Griffith threshold
[K}(1 — v)/2uo = 2y], where y is the surface energy
of the crack plane, and obtain r./b = uob/87w(l — v) 7y,
which is the Rice-Thomson result in two dimensions [4].

We can carry out a linear stability analysis of Eq. (4)
around the unstable point in the (y,2~') plane similar
to the K-T analysis [11] and determine the “critical™
trajectory that flows into the unstable point. We can then
use the boundary conditions to express T, as the solution
of a nonlinear equation:

_ b’ [1 = 2mexp(=BeEch + ob?Bero/2)]
w(l — v)(1 + ob2B.ro/4)

(B!

(6)

(In the above expression all quantities are expressed
in 3D units for ease of calculation and it is done by
transforming the 2D parameters appropriately using the
Burgers vector as a suitable length scale.) It is not
surprising that the transition temperature is expressed
in terms of the elastic constants, the core parameters,
and the applied stress because these quantities define the
energy of a dislocation in any theory based on linear
elastic description which represents a common starting
point of all the models proposed so far. However,
the existing models [4-6] assume thermally activated
generation of dislocations and it is then necessary to
introduce additional conditions, such as a specific rate of
dislocation generation [6] in order to define a transition
temperature. In contrast, the present model predicts a
well-defined transition temperature without any additional
assumptions and explains how a massive generation of
dislocations suddenly becomes possible above a certain
temperature for a given stress level in all materials.
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We have calculated 7. from Eq. (6) using the same val-
ues of the material parameters as in the Rice-Thomson
model [4] and using E, = (ub?/27) In(b/ro) with v = 0.
For typical values of the surface energy of brittle ma-
terials, the local stress at a distance ro from the crack
tip is of the order of wo/10. For Si, our approach pre-
dicts T, ~ 1000 K for a partial dislocation and 5000 K
for a full dislocation. If the crack tip stress is of the
order of w(/100, then T, ~ 1240 K for a partial dislo-
cation. For Cr and W, we obtain T, equal to ~ 1600 K
and 3000 K, respectively, using the parameters in [5]. The
stress is assumed to be one-tenth of the respective shear
modulus for both materials. These results are in qualita-
tive agreement with observations and T is typically two-
thirds of the melting temperature for very brittle materials.

The above results demonstrate clearly the impor-
tance of thermally induced dislocation screening when
studying the problem of BDT. It is not surprising that
thermal fluctuations play such a crucial role since the
phenomenon is strongly temperature dependent. This
feature is best seen from experiments in Si single crystals
[2]. The transition to ductile behavior is dramatic and
occurs in a narrow temperature range of less than 5° ac-
companied by massive dislocation activity. Such a rapid
and sudden dislocation generation is only possible if the
generation process exhibits a thermally induced coopera-
tive instability as described above. In materials where the
dislocation mobility is a power-law function of the stress,
a correlation between the strain-rate dependence of 7.
and the temperature dependence of dislocation mobility
can be deduced by combining stress-induced dynamical
effects in the instability criterion derived above. This is
a separate additional feature of the BDT distinct from the
sudden massive dislocation generation that is responsible
for the transition and is described elsewhere.

In dislocation theory, homogeneous generation of dis-
locations is usually considered to be impossible, based on
the energy needed to nucleate a single dislocation loop.
Hence, thermal effects are generally ignored. Both the
K-T and the present model show how quite a different
conclusion is reached when more realistic assumptions
considering many dislocations and possible interactions
between them are made. The concepts discussed here pro-
vide an alternate mechanism for dislocation generation at
finite temperatures. This mechanism is different from the

stress-driven Frank-Read sources in which preexisting dis-
locations generate future dislocations, a mechanism that is
known to exist in all solids. This approach may help to
resolve, in general, the dilemma in explaining the rapid in-
crease in dislocation density at low values of plastic strain
in a material containing an initially low density of Frank-
Read sources.
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