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Ab Initio Theory of Dislocation Interactions: From Close-Range Spontaneous Annihilation
to the Long-Range Continuum Limit
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Parallel supercomputer technology now permits ab initio studies of systems of sufficient size to
explore the interactions among dislocations in a solid. This study shows that the silicon shufle-set
(110) screw dislocation is stable against spontaneous dissociation, provides an ab initio value for the
dislocation core energy, demonstrates a dislocation-antidislocation interaction approaching the classical
limit within a few tens of angstroms, and reveals a pathway for the spontaneous mutual annihilation of
a dislocation dipole of the type that occurs when a Frank-Read source emits a dislocation loop.

PACS numbers: 61.72.Lk, 71.10.+x

One dimensional topological defects play a fundamen-
tal role in a variety of areas of condensed matter physics
from flux lines in type II superconductivity to Kosterlitz-
Thouless vortex-pair excitations in tvvo dimensional phase
transitions [1] to vortex lines in inviscid fluid flow to
dislocations in solids. Because of short-wavelength loga-
rithmic divergences, theoretical treatments of the energet-
ics of these defects often introduce an ad hoc cutoff at
some microscopic length scale. In this Letter, we present
calculations that overcome this "ultraviolet catastrophe"
in a realistic system and that therefore provide reliable
microscopic information such as the dislocation core en-

ergy. To do this, we treat the short-wavelength physics
properly through a first principles quantum mechanical
approach while studying a system of sufficient size to
exhibit macroscopic behavior. The local-density, nonlo-
cal pseudopotential, supercell framework [2] provides the
best compromise between reliability and tractability for
such an application, and as that approach is most conve-
niently applied to periodic systems, we shall focus on the

physics of dislocations in solids.
In the solid state, it is dislocations, primarily, that are

responsible for the mechanical properties of macroscopic
matter. They also play an important role in semiconductor
technology as well, where the performance of devices is
degraded by the conduction pathways which dislocations
provide [3] as they form at elevated temperatures either
during fabrication [4] or operation [5]. Understanding
dislocation processes requires knowledge not only of the

basic properties of the dislocations themselves but also of
the mechanisms of their creation and propagation. These
mechanisms, in turn, are controlled by the interaction of
dislocations with point defects such as impurities, the
interaction of dislocations with other extended defects
such as surfaces and grain boundaries, and the interactions
of dislocations among themselves [6].

The study of dislocations has developed successfully
over the last sixty years as a classical continuum theory.
However, continuum theory cannot describe the atomic
processes that occur as two dislocation cores come into
contact nor give a priori information on the limits of its

own applicability at short length scales. Atomistic ef-
fects in dislocations of diamondlike materials were first
considered by Shockley [7], Read [8], and later Hornstra

[9], who all reasoned qualitatively from the principle that
diamondlike materials prefer to maintain local tetrahedral
coordination. Later studies used semiempirical classical
potential methods to determine quantitative structures,
usually combining the resulting coordinates with semiem-
pirical quantum calculations to provide electronic infor-
mation as well [10—16]. It is only within the last year or
two that supercomputer technology has developed suff-
icientl (primarily through the introduction of parallel pro-
cessing) to allow more reliable, parameter-free ab initio
quantum treatment of dislocation systems. Ab initio dis-
location studies have so far focused either on the core
structure itself [17] or on the effects of impurities on the
core structure [18],but have yet to address the issue of the
interactions among dislocations.

In this Letter we study specifically the interactions
among dislocations on the technologically important {111]
slip system of silicon. To avoid the complexity of com-
paring the energies of systems with differing amounts of
material, we consider pure screw dislocations, which have

(110)Burgers vectors on the {111)slip system. Associated
with the two atom basis of the silicon lattice are two dis-
tinct microscopic geometries for the (110) screw disloca-
tion, commonly referred to as the "glide" and the "shuffle"
sets [6]. Experimental observation of plastically deformed
samples reveals (110) screw dislocations of the so-called
"glide" set [19]dissociated into partial dislocations bound-

ing stacking faults with widths on the order 30—50 A [20].
First principles study of the interaction between even a pair
of dislocations of such extent would be prohibitive even
for the latest generation of massively parallel supercom-
puters. In contrast, the splitting of shuffie set dislocations-
into partials is a more complex process, leaving structures
with geometries which, unlike the basic 30 and 90 par-
tial dislocations of the glide set [15,17,21], are not suited

to reconstructions which restore the fourfold coordination
of the lattice [9]. Accordingly, one may expect the shuf-

fle (110)screw dislocation to be stable against spontaneous
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dissociation into partials (as confirmed by our calculations)
and thus be suited to this initial first principles quantum

treatment of dislocation interactions.
For this study, we calculated (within the aforementioned

density-functional framework [2] ) the energies of periodic
supercells containing dislocation dipoles at differing sepa-
rations (R = 3.3, 10, 16, 23 A.). The basis set for expand-

ing the electronic wave function includes plane waves up
to a cutoff of 6 Ry [22], and two special k points sample

the Brillouin integrations. To simplify comparison, all dis-

location dipoles are embedded in orthorhombic supercells
of the same size, containing 324 atoms and 59 A, X 28k
in extent in the (110) plane perpendicular to the screw

axis. (Figure 1 shows the basic geometry of the calcu-

lation. ) To produce the atomic configurations, we first

set the bonding topology according to Hornstra's proposed
tight-core shuffle configuration [9] for a screw dislocation-
antidislocation pair separated along the [112]direction and

then find a suitable geometry by relaxing the lattice within

a simple Keating model where the bonding topology can be
enforced as a constraint [23]. From this initial geometry,
we then relax the atomic coordinates under the influence

of the electronic wave functions in the full ab initio calcu-
lation until the lattice energy converges to within less than

one-tenth of an electron volt per supercell.
Figure 2 displays the final relaxed structure of a disloca-

tion core taken from the maximally separated configuration
of our study (23 A.). All atoms in this ab initio structure

remain fourfold coordinated, and the Hornstra tight-core

topology is stable despite significant local strain in the lat-

tice, where bonds are stretched and bent by as much as

9.2% and 23', respectively.

As the distance between defects in our calculation de-

creases, the local strain steadily increases as the strain

fields from the two defects overlap until the two de-

fects are centered on neighboring columns of sixfold rings

(Fig. 3). At this point, the silicon bonding network no

longer can support the microscopic stress, and the ini-

tial Keating-refined Hornstra configuration relaxes steadily

through the transition state of Fig. 4 to the bulk silicon lat-

tice configuration without crossing an energy barrier. In

this spontaneous annihilation process, the bonds crossing
the plane connecting the two dislocation lines yield to the

stresses pulling the atoms involved in these bonds toward

their bulk locations to the extent that these bonds break and

the atoms eventually approach and bond with their partners

in the bulk configuration instead. A Frank-Read source

[24] tied to a dislocation loop segment by a pair of dis-

location lines in this geometry will emit a full dislocation

loop into the crystal as the lines migrate under external

strain into neighboring columns of sixfold rings and anni-

hilate along the pathway which Fig. 4 illustrates.
While the relatively large dimensions of our supercell

combined with the decay of strain fields away from a dis-

location ensure a good representation of the core struc-

ture of the isolated dislocation in Fig. 2 and the dislocation

dipole annihilation process depicted in Fig. 4, the logarith-

mic growth with distance of the interaction energy of two
dislocations demands much more delicate consideration of
the effects of periodic boundary conditions on the energy
of our supercell. The excitation energy (per unit length

along the dislocation axis) of our dipole supercell relative

to bulk crystal differs in two ways from the energy which

interests us, the energy of an isolated dipole at finite sep-
aration, Ez;~,i, (R). First, by holding the lattice vectors of

FIG. 1. Three dimensional perspective view of bulk silicon in
the geometry of the present calculation. The [111]direction
runs vertically, and, apart from a 16 rotation to the right to
facilitate viewing, the [110]screw axis runs perpendicularly out
of the page and the [112]direction runs horizontally from left
to right. The supercell described in the text extends 28 A to the
right, 59 A vertically, and contains a total of 324 atoms. Black
bonds indicate two sixfold rings stacked along the [110)axis.

FIG. 2. Stable ab initio core structure for an isolated compact
shuffle (110) screw dislocation in the Hornstra tight core shuffle
topology (same view as Fig. 1). Black atoms outline the core
of the defect, and black bonds indicate two microscopic Burgers
circuits about the dislocation core that run clockwise into the
page.
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FIG. 3. Relaxed Keating configuration for a proximate disloca-
tion dipole in the Hornstra topology separated 3.3 A along the
[112]direction. Black atoms make up the cores of the two com-
ponent dislocations. (The dislocation on the right corresponds
to the defect in Fig. 2.) Black bonds of the dislocation on the
right (left) comprise two microscopic Burgers circuits running
clockwise into (out of) the page. Separating the component
dislocations further from one another generates additional rows
of tilted vertical bonds between the dislocation cores.

the unit cell fixed, we have imposed a stress not present
in the periodic dislocation dipole array because, as Bigger
et al. [17] point out, the effect of such an array is to in-

troduce a bulk shear strain into the crystal. The energy
associated with this effect is easily calculated by comput-

ing the energy released within the Keating model, which
is well suited and parametrized to describe such bulk elas-
tic effects, upon relaxation of the orthorhombic boundary
conditions. Once we have the correct excitation energy
per unit cell for the fully relaxed dislocation dipole lattice,
AF.„&~, the second effect we must consider is the energy
contribution from the periodic images of the dislocation
dipole in our cell. If the supercell is sufficiently large (as
we verify below), continuum theory then correctly predicts
the size of this effect, splitting the energy of the dislocation
dipole lattice into Ed;~,~, (R) and a Madelung-like term,

dp. i. ( )

pb' IIL —Rll IIL + Rll~
+ 1n (1)

LAO

where b2 is the square of the Burgers vector of the compo-
nent dislocations, L ranges over the vectors of the dipole
lattice, and p, is an appropriate combination of anisotropic
elastic constants for (110) screw dislocations in the sili-

con lattice [6]. Note that the net zero Burgers vector of
each dislocation dipole ensures that the dislocation core en-

ergy does not appear in the Madelung term. Classical con-
tinuum theory further gives Eq;~,~, (R) in terms of the en-

ergy contained in the lattice beyond some arbitrary (macro-
scopic) distance r, from the centers of the dislocations
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FIG. 4. Transition state through which the dipole in Fig. 3
passes during spontaneous annihilation. As the titled vertical
bonds of the dipole (now dashed) yield to the stress, the atoms
in the center of the defect move toward and eventually bond
(new solid lines) with their bulk partners to reform the closed
sixfold rings of the crystal.

(where the distortions are mild) and the classically undeter-

mined, albeit physical, lattice excitation energy contained
within a distance r, of an isolated dislocation core, E,(r, ),

Ed;z, ~, (R) = 2E„(r,.) + ln —. (2)
p, b2 R

~c.

A least-squares fit of b, E„&&(R)from our stress-corrected
microscopic calculations for the three stable configurations
in our study to Eqs. (1) and (2) gives the value p, b2/
2m. = 0.69 +. 0.26 eV/A for our ab initio silicon lattice,
consistent with the value 0.92 eV/A, determined from elas-
tic theory and the experimentally determined elastic con-
stants [25]. Artned with this value of p„Eq. (1) then

relates our calculated energies to Ed;~, &, (R). Figure 5

displays the resulting ab initio prediction of the energy
of an isolated dislocation-antidislocation pair. Note that,
apart from not predicting the spontaneous annihilation of
the proximate core-anticore pair, the continuum form de-

scribes the lattice distortion energy extremely well, even
down to the preannihilation energy of the dipole at the
smallest microscopic separation (to which the curve was
not fitted). The interaction we calculate exhibits the clas-
sical limit within just a few tens of angstroms, justifying
our classical treatment of the periodic supercell images and

allowing us to extract from our fit a reliable ab initio value
for the core energy of the shuffle-set (110) screw disloca-
tion. At our best fit value for p„, we find the core energy,
referenced at the Burgers vector, tobe E,(r, —= b) = 0.56 ~
0.21 eV/A. . (Fixing p, at values above the optimal 2

0.69 results in lower values of E, to make the best fit.)
As a point of reference, the energies of our initial

configurations in the Keating potential may be put through

the same analysis to yield a classical atomistic estimate
for the core energy. The Keating potential is a simple

expansion about the perfect crystal and should not be
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open the process of dislocation pinning to ab initio study.
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FIG. 5. Ab initio prediction for the energy (relative to bulk) of
an isolated dislocation-antidislocation pair (points with ~10%
error bars; see 17) and the elastic continuum theory form
(curve) for the same quantity. The arrow indicates the spon-
taneous annihilation of the defect of Figs. 3 and 4 back to the
bulk configuration. The preannihilation energy of this configu-
ration is the ab initio energy of the configuration of Fig. 3 with
a small, = 0.1 eV/A, long-range relaxation energy estimated
from the magnitude of the preannihilation ab initio forces.

trusted a priori in the highly strained regions that are
critical to the core energy and where, for example, this
atomistic model fails to predict the annihilation pathway
of Fig. 4. Nonetheless, for the shuffle-set (110) screw
dislocation, the Keating model gives results comparable
to those from the ab initio calculation, overestimating the

2

dislocation interaction strength, z
= 1.10, and yielding

a similar value for the core energy, E,(b) = 0.72.
The tetrahedral bonding network of the dislocation

core in this study is most likely responsible for this
system's rapid approach to the continuum limit. The
knowledge that the continuum limit is approached so
rapidly in fourfold coordinated silicon systems, even when
containing highly strained bonds, is of significant practical
importance because the component partial dislocations
of the experimentally observed glide set most likely
reconstruct to tetrahedral configurations [15,17,21]. Qur
results suggest that quality energetics for such systems
may be obtained in relatively small cells by compensating
for the effects of periodic images within elastic continuum
theory. It may now be possible, for instance, to extract
core energies for extended glide set dislocations from
feasible, or already existing, calculations of the energetics
of the separate components of these dislocations. Future
calculations in larger supercells will allow us to gauge
the presence of any renormalization of the bulk elastic
constants at small length scales, and, finally, the core
energy extraction procedure we employed above may be
used to determine the effects of the presence of impurities
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