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Correlation Dimension and Largest Lyapunov Exponent for Broadband Edge Turbulence
in the Compact Helical System
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The correlation dimension has been investigated in detail for broadband edge density fluctuations
observed in the compact helical system. Fractal dimensions of 5 —9 have been obtained, depending on
plasmas produced, and hence, quantitatively characterize the attractor of the turbulence. The largest
Lyapunov exponent has been also calculated, indicating that the observed chaos is deterministic and the
attractor is strange.

PACS numbers: 52.35.Ra, 05.40.+j, 47.52.+j

There has been considerable interest in edge plasmas
of toroidal devices. It is especially of crucial importance,
related to the anomalous radial transport, to investigate
the properties of the broadband turbulence whose peak in

amplitude is located in the plasma edge [1—3]. However,
the turbulence properties are not clearly understood yet
and are still open to studies of their underlying physics.

The broadband frequency spectrum is also well known
to be characteristic of chaos, observed in a nonlinear
physical system that usually has a small number of
degrees of freedom [4—6]. Thus one important question
is whether the broadband turbulence observed in the edge
plasma is chaotic or not [7]; i.e., can the dynamical
system be modeled by nonlinear equations with only a
few variables [8]'? To our knowledge, however, this

problem is not clearly solved yet. There are no clear-
cut publications to demonstrate that the attractor of
the broadband edge turbulence is strange. The largest
Lyapunov exponent, for example, has not been obtained at
all, which is the quantity used to characterize the average
divergence of neighboring trajectories on the attractor, and
hence, the most important quantity to distinguish between
chaos and white noise [4]. A correlation dimension is
the only quantity that has been calculated for the edge
turbulence, and besides, the results are not sufficient
to solve the problem [7,9,10]; the dimension for the
turbulence with specific values of wave number has been
calculated in the TFR tokamak, but the dimension for the
total turbulence has not been estimated [7], and it has
been shown in the TEXTOR tokamak that the broader
the frequency spectrum is, not surprisingly, the larger the
dimension is [10]. In this paper, we study the correlation
dimension and largest Lyapunov exponent of broadband
total turbulence measured in the compact helical system
(CHS) edge plasma, to understand better the properties of
edge plasma turbulence from the chaotic point of view.

The most used algorithm of calculating the corre-
lation dimension v was proposed by Grassberger and
Procaccia [11]. This algorithm requires the reconstruc-
tion of a trajectory in a p-dimensional space, which is
done by taking as coordinates 1(t),I(+7.), I(t + 2r), . . . ,

I[t; + (p —1)r], where 7 is an appropriate delay time

[12,13]. In our experiments the time t is discretized, so
that we obtain a series of p-dimensional vector r; repre-
senting the phase portrait of the attractor:

r; = [l(t;), I(t; + 7), l(t; + 2r), . . . , lft; + (p 1)t]),
i = 1, 2, 3, . . . , m. ( I)

For proper reconstruction of the attractor, ~ must be
chosen not too small or not too large [11]. Denoting
r,„,as the autocorrelation time for 1(t), a value of r
should therefore be chosen such that r = r,„,[9]. In

our analysis, ~ is in the range «10 p, sec. With the series
of vectors r;, one can evaluate the correlation sum C(r),
defined by

where H is the Heaviside function defined by H(r) = l

for positive r, and 0 otherwise. For an intermediate re-

gion of r, C(r) will scale like C(r) ~ r'. Thus, for each
value of v, we calculate C(r) and determine the slope
of the function g defined by logC(r) = g(logr), arriving
at an exponent v. A more quantitative characterization
of chaos comes from determination of a Lyapunov expo-
nent; finding a positive Lyapunov exponent is an unam-

biguous signature of chaotic behavior. In this Letter, the

Lyapunov exponent is calculated using the algorithm de-

veloped by Sato, Sano and Sawada [14], which is easy to
implement and has less limitation even for high dimen-

sional attractors.
We have tested our implementation of the algorithm

by ana1y zing time series from mathematical systems
with known attractors, and have obtained the already
tabulated values for the correlation dimension and largest
Lyapunov exponent. The algorithm also has been applied
to mathematical and experimental data from an ion-sheath

system [5,6,15]. Our use of 16 kilobytes data points
has allowed us to measure the structure for correlation
dimensions up to -12.

Experiments have been performed on the CHS, which

is a heliotron/torsatron device characterized by a low
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aspect ratio of 5 [16]. Various plasmas, e.g. , neutral-beam
injection (NBI), ion cyclotron range of frequency wave
(hereafter referred to as RF), and NBI plus RF plasmas
were produced for this investigation with magnetic fields
of 0.95—1.4 T, and magnetic-axis positions of 91.1—
94.9 cm. The port-through NBI power is 850 kW, and the
RF power is 120—200 kW at 22 MHz. Thy line averaged
electron density n, was (0.7—3) x 10'3 cm 3, and the
electron temperature at the plasma center T, (0) was 0.16—
0.35 keV. The duration of discharge was 70—130 msec.
All data shown here were taken in the flattop region of the
plasma discharge.

A thermal neutral lithium beam of 1 cm diameter with
an eight-channel optical detection system, which measures
the rates of local photon emission I(r) for the lithium reso-
nance line (670.8 nm) due to electron impact excitation,
was used to measure electron density fluctuations in edge
plasmas, as shown in Fig. 1 [1,17]. Radial electron den-

sity profiles also can be obtained with this detection sys-
tem [1,17]. The spatial resolution of each channel was
-S mm and the distance between adjacent channels was
6—12 rnm. The electron density fluctuations given below
were measured between the outermost magnetic surface
and the radial position 2 cm away from it towards the
chamber wall. The signals were digitized at 2 MHz with
a transient recorder, and 16 kilobytes of eight-bit data,
which was the data length for analysis, were recorded for
two channels and each shot. The high-frequency response
of the signals was well above 2 MHz.

A typical wave form of electron density fluctuations
observed in the RF plasma and a corresponding power
spectrum S are shown in Figs. 2(a) and 2(b), respectively.
The duration of record is 8.192 msec, about a quarter
of which is shown. The power spectrum is plotted on
logarithmic vertical and horizontal scales. In these figures,
nonperiodicity and broadness can be observed. The power
spectrum shows the occurrence of (I/f)-type noise in the
frequency range of 20 & f ( 250 kHz, and the exponent
of the power law is found to be ——2 in this frequency
range from the log-log plots represented in Fig. 2(b).
These features of the edge fluctuations are almost the same
as observed in other toroidal devices [1—3].

Figure 3(a) shows log-log plots of C(r) for the time
series measured in the NBI plus RF plasma. The slopes
of C(r ) on a log-log plot begin to saturate when p exceeds
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FIG. 1. Schematic of experimental apparatus.
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FIG. 2. (a) Real-time signal of electron density fluctuation I.
(1) Power spectrum S of I.

8. The saturation of v with an increase in p is illustrated

by Fig. 3(b), representing that the correlation dimension
is -8.35. In this way, v's are obtained to be 6.21 ~ 0.10
for the NBI plasma, 6.05 ~ 0.30 for the RF plasma, and
8.36 ~ 0.15 for the NBI plus RF plasma, respectively.
These fractal dimensions suggest that the attractor of the
observed fluctuations is strange, and that the system has
a relatively small number of degrees of freedom. Little
difference in v, within ~0.3, is observed in the RF plasma
when the RF power varies from 120 to 200 kW. It should
be also noted that the plasma heated by two kinds of
heating sources yields the larger v than that heated by one
kind, and this is acceptable since the turbulence results
from a more complicated system might have a larger
number of degrees of freedom. In a Navier-Stokes fiuid
at a high Reynolds number, the dimension of the attractor
is reported to grow faster than a power (e.g., 4j3 [18])
of the Reynolds number. In plasmas, however, we have
not identified parameters which control the correlation
dimension of the edge turbulence, and hence, need a
further investigation.

A temporal autocorrelation function C,„,of I(t) is
shown in Fig. 4(a). In this figure, C,„,tends to zero as the
delay time increases. This suggests that the resemblance
of the signal with itself in time diminishes, and even dis-
appears for times that are sufficiently far apart. Therefore,
there is a possibility that the behavior of the edge fluctua-
tions is chaotic, since a chaotic regime is intrinsically un-

predictable, by progressive loss of self-similarity, and it
follows that no finite interval of observation of the sig-
nal suffices to predict its future behavior [4]. The data
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FlQ. 3. (a) Log-log plot of C(r) for the strange attractor.
(b) variation of v as a function of the dimension p. The solid
straight line shown in (b) is for random noise.

analyzed here are those measured in the RF plasma that

gives the lowest v among our three types of plasmas. The
obtained values of r,„,are found to differ shot by shot,
although the experiment was performed under the same
conditions. Other parameters such as power spectrum, v,
and so on are almost the same, respectively, independently
of the shot. The reason for the wide range of r,„,is not
clear at this stage, but it is considered that a set of imper-

ceptibly different initial states of the plasma leads, in an

unpredictable way, to many final states, that is, to differ-

ent r,„,s. This property is a kind of sensitivity to initial

conditions in a chaotic regime [4].
The Lyapunov exponent is calculated for the time

series measured in the RF plasma. Figure 4(b) shows an

example of calculation of the Lyapunov exponent, and we

can find a plateau that gives an estimation of the largest

Lyapunov exponent A [14]. Apparently, the value of A

is positive, indicating that the distance of neighboring
trajectories on the attractor grows exponentially with time.
Figure 4(c) shows that there is an interesting relation
between A and r,„„.A is a decreasing function of 7,„,.

This result is understandable since, in a chaotic regime,
two trajectories that are initially very close will diverge,
resulting in loss of all resemblance after a finite time, as
mentioned before, that is, the faster the two trajectories
diverge due to the large A, the shorter r,„,becomes.

FtG. 4. (a) Autocorrelation function of I. (b) The largest
Lyapunov exponent for I with p = 9. (c) Relation between
A and r,„t~

The largest Lyapunov exponent is found -0 for the time

series, whose 7.,„,is «150 p, sec.
In summary, we have studied a correlation dimension

and the largest Lyapunov exponent for broadband elec-
tron density fluctuations in the CHS edge plasma. It is
concluded that the broadband turbulence is essentially de-

termined by relatively small number of variables, which

spans a low dimensional subspace for chaos. An inter-

esting finding is that the plasma heated by two kinds

of heating sources yields the larger correlation dimen-

sion than that heated by one kind, and hence, the corre-
lation dimension can be surely used as a tool to study

the mechanism of edge turbulence. The largest Lyapunov
exponent also confirms that the chaos observed in our ex-
periments is deterministic and the attractor is strange. The
change of the largest Lyapunov exponent under the same

experimental conditions may reflect variations in the na-

ture of the edge fluctuation itself, due to a set of im-

perceptibly different initial plasma parameters. Finally,
further studies will aim at an effect of chaos on particle
transport, so that the relation between plasma confinement

and turbulent structures in an edge plasma can be better
understood.
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