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Restoration of Rectangular Pulse Shape after Edge Erosion for a Space-Charge Dominated
Electron Bunch

D. X. Wang, J.G. Wang, and M. Reiser
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
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%e present in this Letter a novel experimental method that demonstrates the time reversability of
the 1D cold-fluid equations for a space-charge dominated beam. A bunch of charged particles with an

initially rectangular line-charge and velocity profile experiences edge erosion during transport through
a focusing system due to the nonlinear, longitudinal space-charge forces at the edges. By imposing on
the eroded beam pulse a linear velocity gradient at a proper location one can restore the rectangular
line-charge profile downstream. This technique could be used to offset edge erosion and assure a
rectangular pulse shape for efficient acceleration and uniform power flow in the interaction region for
applications of intense, high-power beams.

PACS numbers: 29.27.Bd, 29.17.+w, 41.85.Ja, 52.35 —
g

It is well known that the line-charge profile of a bunched
beam in the low-temperature limit must have a parabolic
form to assure that the space-charge forces are linear and
hence that the pulses retain their parabolic shape. For some
applications of intense charged particle beams, e.g. , heavy
ion inertial fusion [I] or free electron lasers, however, it
is desirable to have bunches with a rectangular current
profile. Such square-shaped pulses provide a constant
load to the cavities and hence efficient energy gain in

the accelerator and uniform power flow in the interaction
region. The major drawback is the strong nonlinear,
longitudinal space-charge forces at the two ends which
lead to rapid edge erosion, as demonstrated experimentally
and analytically by Faltens, Lee, and Rosenblum [2]. The
conventional remedy for this problem is to use auxiliary
acceleration gaps to produce the so-called "ear field" which
balances the nonlinear space-charge fields and to keep
the beam edges short. This approach complicates the
acceleration structure considerably.

We propose a rather simple method to restore the rectan-
gular shape of a high-current beam after edge erosion has

occurred. This technique is based on the time reversibility
of the cold fiuid equations. In Ref. [3],Ho, Brandon, and

Lee applied this idea to charged particle beams, and pro-
posed a sophisticated beam compression scheme for heavy
ion fusion accelerators. They showed very promising com-
puter simulation results. But, to the best of our knowledge,
there has not been an experiment to demonstrate this time
reversibility with charged particle beams. In this Letter we
report the first experimental demonstration of the time re-
versibility of the cold-fluid equations with a space-charge
dominated electron beam propagating in a periodic sole-
noid focusing channel. This leads to a simple approach to

restore the rectangular pulse shape after edge erosion has
taken place. In addition, the experiment verifies in part the
theoretical pulse compression scheme of Ho, Brandon, and

Lee. We will first briefly introduce the one-dimensional
cold-fiuid model and analytical formulas for the restoration
process. Then we present the experimental results, which
show fairly good agreement with the theory.

The longitudinal dynamics of a space-charge dominated
beam is governed by the one-dimensional cold-fluid equa-
tions, given by
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where A is the line charge density, v is velocity in the
beam frame, eo is the permittivity of free space, e/m is the
ratio of charge to mass of the particles, y is the Lorentz
factor, and g is a geometry factor in the order of unity.
The longitudinal electrical field E„ in Eq. (1) is calculated
under the long-wavelength limit, which requires that the
beam length is much greater than the beam radius. This
set of nonlinear equations can be solved by the method
of characteristics [4—6], originally developed to study the

unsteady supersonic gas dynamics, and the exact analytical
solutions are available in some parameter range. For
an initial rectangular beam with a uniform velocity, the

analytical solutions of Eq. (1) can be found in Ref. [2, 3].
In the simple wave region, the line charge density and

velocity can be put, for the application to the design of
the restoration experiment, in the form
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Here r = z/vo is the longitudinal beam-frame coordinate
from the beam center at which z = 0, and r = 0, vp is
the beam center velocity in the laboratory frame, 7p is the
initial beam pulse duration, c, is the wave velocity given by
c, = (egI;/4m aomvoy ) with I; being the beam current,
s is the traveling distance of the beam center, and s p

at which the two rarefaction waves just meet at the beam
center is given by s,„,~ = (vo) ro/2c, . Note that the
formulas (2) and (3) are only valid for the front half of the
beam (7 ( 0), including the leading edge. It is symmetric
for the other half where ~ & 0 except for a sign difference
of the velocity V.

A set of schematic plots in Fig. 1 illustrates the expand-
ing process of a rectangular pulse, described by Eqs. (2)
and (3). Figure 1(a) shows the initial rectangular pulse
in its phase space (current I;, velocity c,), while Fig. 1(b)
shows a typical edge erosion in the simple wave region.
The electrons at the leading edge speed up and gain en-

ergy while those at the falling edge slow down. The ve-
locity distribution on the edges is linear. The bottom of
the beam current edges moves out at a speed of 2c, in the
beam frame, while the top of the edges moves into the flat
region of the beam pulse at a speed of c,. Consequently,
the slope of the linear velocity distribution on the edges de-

creases and the full length of the beam expands at a speed
of 4c, as the beam continues to propagate. There comes a
distinct moment at s = s,„,~, as shown in Fig. 1(c), when
the two rarefaction waves just meet at the beam center, the
so-called "cusp" point. At this moment the velocity dis-
tribution is linear along the entire bunch.

Utilizing the time reversability of the fluid equations we
can restore and accelerate rectangular bunches by impart-
ing a linear velocity tilt in the longitudinal phase space at
the cusp location. The restoration and acceleration process
is schematically illustrated in Fig. 2. Suppose that an ini-
tial rectangular beam pulse as shown in Fig. 1(a) reaches,
due to drift expansion, the cusp point as shown in Fig. 1(c).
According to the time reversibility, if an appropriate linear
velocity tilt is imparted onto the beam while the density
remains the same as shown in Fig. 2(e), the beam current
profile will be restored with the same rectangular shape,
but a higher constant energy, downstream as shown in
Fig. 2(g). At this point the beam may be accelerated by a
constant field to achieve efficient energy gain and uniform
power flow. After that the beam starts expanding again
just like that from Figs. 1(a) to 1(c). This restoration and
acceleration process can be repeated as desired, though the
intervals between cusp points are not really constant due
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FIG. 1. Expansion of a rectangular bunch in the "simple
wave" region; (a) an initial rectangular pulse in phase space;
(b) typical edge erosion; (c) "cusp" point.

FIG. 2. Illustration of pulse restoration process: (e) an exter-
nal linear velocity tilt applied at the cusp point; (f) an interme-
diate stage during restoration process; (g) restored rectangular
pulse with uniform current profile but higher energy.
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FIG. 3. Experimental configuration.

to the change of the beam velocity. The parameter rela-
tions for a restoration process is D = s,„,~ + (vf) rp/2c, f
and dv/dt = 4c,f/37p. Here s,„,~ is the location of the
acceleration gap to generate the linear ramp field, 0 is
the location where the rectangular pulse shape is restored,
and 0 & 2s,„,p vf is the final beam center velocity after
restoration (vf ) vp), d v/dt is the linear velocity gradient
or "tilt" to be appropriately tuned to just balance the space-
charge force in order to achieve a perfect rectangular beam
with a constant velocity, and c,f is calculated as c, except
that vo and y are replaced by vf and yf.

The experiment for demonstrating the principle of pulse-
shape restoration was carried out with the existing ex-
perimental facility originally developed for a longitudi-
nal compression experiment [7]. The experimental con-
figuration is illustrated schematically in Fig. 3. The elec-
tron bunch was produced by a short-pulse electron beam
injector which consisted of a variable-perveance electron
gun, an induction acceleration module, and three matching
lenses [8]. A proper velocity gradient could be imparted to
the beam by the time-varying acceleration voltage of the
induction gap. Then, the beam was matched into a 5-m
long periodic focusing channel consisting of 36 short so-
lenoid lenses. Five fast wall-current monitors with more
than 1.2 GHz bandwidth and three energy analyzers with

a time-resolution of 0.5 ns and an energy resolution of a
couple of electronvolts were installed to measure the beam
current profiles and energy distributions, respectively, at
the different locations along the channel.
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The first experiment was to verify the linear velocity
distribution at the cusp point predicted by the method of
characteristics. An electron beam with 2.5 keV in energy„
35 mA in current, and 17.5 ns in pulse duration was
produced and matched into the 5-m long channel without
an induction acceleration. The beam pulse length was
carefully chosen so that the cusp point should show up
right at the second energy analyzer which was located at a
distance of s = 3.746 m from the electron gun. The beam
current and energy were measured at different locations
along the channel. Some of the results are shown in

Figs. 4 and 5, where the abscissa is the relative time scale
of the signals along the channel, the circles are from the
experiment, the triangles are from computer simulation„
while the solid curves are from the calculation of Eqs. (2)
and (3). Figures 4(a) and 4(b) show the beam current
profiles with edge erosion in the simple wave region.
Figures 5(a) and 5(b) show the velocity distribution along
the beam bunch in two different channel locations. It is
evident that the experimental data, the simulation results,
and the analytical curves from the method of characteristics
are in a very good agreement. Particularly, the beam
velocity distribution at the second energy analyzer, i.e., the

cusp point, is very linear as shown in Fig. 5(b).
Then, a preliminary pulse restoration experiment was

performed. In the experimental setup the distance between
the electron gun and the induction gap was about 0.34 m
which was rather short. In order to make the cusp point
appear at the induction gap, a short beam pulse, high wave
velocity and slow beam velocity were desired, that required
low energy and high current beams. A 300 eV, 3.3 mA,
and 7 ns electron beam was generated and matched into
the 5-m channel. Without application of an induction ac-
celeration voltage the beam rapidly expanded and disap-
peared. The beam current profile could only be measured
at the first and second current monitor shown in Fig. 6(a).
The expanding bunch length was consistent with the cal-
culation, though the noise became significant due to the

very low current level. With a proper induction accelera-
tion to impart a linear velocity tilt, the beam pulse shape
was restored downstream and expanded again afterwards.

-10—

E

4P
-20—

~ 10—
I

0. 1 1—

0. 10—

s = fl.473 tn

0. 1 0

3.746 nl

-40—

'I'ime (ns)

(a)

s=2.39 m

E

3 0

I I I

100 1 1!I 1 20

Time {nsl

(b)

s= 3.48 m

I

I

130

Qt

0.09—

)

0 0!1—
T

1 c
T

20 30

I'ime (nsl

0.09

40 SO 00

T1nte (ns l

(b)

FIG. 4. Current profiles due to drift expansion: (a) at s = 2.39
m where the dashed lines indicate the initial rectangular bunch;
(b) at s = 3.48 m.
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FIG. 5. Velocity distribution due to drift expansion: (a) at
s = 0.473 m; (b) at s = 3.746 m which is the cusp point and

shows a linear velocity distribution.
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The beam profiles were measured by the five current mon-
itors shown in Fig. 6(b). The distinguishing feature of the

pulse restoration are that during the process the peak beam
current remains the same, the leading and falling edges
become steep, and the flat top maintains a constant veloc-
ity or energy. One notices that the time intervals between
the pulses are significantly shorter in Fig. 6(b) than that in

Fig. 6(a). This is because the induction module raised the
beam center energy by more than 700 eV. In the experi-
ment we also varied the beam pulse duration, the slope of
the induction gap voltage and beam center energy after the

gap. In each case the beam behavior was consistent with
the theory. The energy measurement for the restored beam
pulse was not available due to the very low beam current
signal level at the energy analyzers.

The time reversibility of the fluid equations is very
general, valid both in the simple wave region and the
nonsimple wave region. In principle, the restoration
process can be performed not only from the cusp point,
but also from any other point during beam edge erosion
as long as an appropriate external field variation can be
generated in the acceleration gaps. In practice, however,
it is easiest to generate a linear ramp of the acceleration
field in the gaps. Thus, a restoration process starting at
the cusp point is most practical.

In the analysis and experiment, a unipotential gap is
considered and employed. Thus, the energy of the beam

pulse is always increased after a restoration process, and

the next cusp point will appear in a longer distance. This
makes it impractical to perform a periodic restoration in

transport channels and accelerators. The remedy for this

problem is to use bipotential gaps. In this case the energy
transferred from the external linear field to the beam pulse
center at the cusp point can be set to zero. A complete
restoration, both in current profile and energy distribution,
of an initially rectangular beam pulse can be achieved.
This will provide a way to form a periodic restoration and
acceleration structure for both linear and circular high-
current machines.

In summary a simple restoration scheme for space-
charge dominated beams was proposed and was experi-
mentally demonstrated for the first time, to the best of our
knowledge. The experiment showed the linear velocity
distribution along the beam at the cusp point. The exper-
iment also achieved the restoration of a short rectangular
pulse. The results agree reasonably well with the theoreti-
cal predictions, based on the one-dimensional cold-fiuid
model. The outcome of this study suggests a possible new
scheme to accelerate high-current beams, though there are
many practical problems to be solved.

The authors would like to acknowledge I. Haber for
his help in computer simulation of beam edge erosion.
This research was supported by the U.S. Department of
Energy.
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FIG. 6. Comparison between drift expansion and rectangular
pulse restoration: (a) free expansion of a rectangular 300 eV,
3.3 mA, and 7 ns bunch, as measured at s = 0.624 m and s =
2.39 m; (b) restoration of a rectangular bunch initially with 300
eV, 3.3 mA, and 7 ns, as measured by the five current monitors,
where the abscissa is the relative time scale of the signals
with t = 0 ns corresponding to the induction gap location and
s = 0 m corresponding to the cathode location, and the ideal
restored rectangular pulse should appear in between the second
(s = 2.39 m) and third (s = 3.48 m) current monitors.
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