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Spiral Defect Chaos in Rayleigh-Benard Convection
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Motivated by recent experiments on Rayleigh-Benard convection, where spiral defect chaos was

discovered, we have simulated the Boussinesq equations for the appropriate Rayleigh numbers not
far from threshold for large aspect ratio systems using a Galerkin method. A detailed analysis of
the results reproduces the experimental findings almost quantitatively. A critical comparison with

recent model calculations is also presented. Our investigations show that the new spatiotemporal
pattern must be considered generic for Rayleigh-Benard convection.

PACS numbers: 47.10.+g, 47.20.Bp

Rayleigh-Benard convection (RBC) in a fluid layer
heated from below provides a canonical example for
pattern-forming transitions in nonequilibrium Quid sys-
tems [1,2]. The convection sets in if the temperature
difference AT across the fluid layer, characterized by the
nondimensional Rayleigh number B, exceeds a certain
threshold AT, (R = R,). Above onset the Prandtl num-

ber P'r= v/K, where y is the kinematic viscosity and K

the thermal diffusivity becomes important. The stabil-
ity regimes (the "Busse balloon" ) of periodic parallel-
roll patterns with wave vectors q in the R-Pr space have

been classified by Busse and co-workers [3]. However, the
natural textures are often found to be more complicated

[4,5] and very recently a new fascinating spatiotemporal
pattern was described consisting of many right and left
handed rotating spirals besides other defects ("spiral de-

fect chaos" ) [6,7]. The fully developed state appeared in a
circular cell with large aspect ratio (I' = radius/height =
80) filled with gaseous CO2 (Pr- 1) fairly near to onset
of convection [e = (R —R,)/R, & 0.5]. The correspond-

ing average wave number q„lies near the center of the
stable wave number band of parallel rolls.

In order to provide for a well-founded theoretical de-

scription of the new scenario, we present in this Letter
simulations based on the standard theoretical descrip-
tion of RBC, namely, the well-known Boussinesq equa-
tions (see, e.g. , [1—3,8]). One has a nonlinear coupling
between the velocity field u (Navier-Stokes equations)
and the deviation 8 of the temperature from the linear

static profile (heat diffusion equation). For a reduction to
nondimensional form (containing only the Rayleigh num-

ber R and the Prandtl number Pr) lengths are measured
in units of the cell thickness d and time in units of the
vertical diffusion time f„—= d /K. We consider realistic
rigid boundary conditions (8 = u = 0 at the horizontal
boundaries z = k~). The onset of convection is then at
B, = 1707.37. Because of isotropy only the modulus of
the critical wave vector q, (q, = 3.12) is fixed.

According to [3] a poloidal-toroidal decomposition of
the solenoidal vector field u has been used,

u = (c1xz c1yz —~xx —cay) f + (c7y Bx 0) 9. (1)

Because of its nonzero spatial average across the cell.

By subsequent projection onto the vertical modes one ar-

rives at a coupled system for the five coefBcient functions

of the horizontal coordinate r.
The truncation of the z modes should be of minor im-

portance for the spiral chaos. In fact, in Fig. 1 it is

demonstrated that in this approximation the Busse bal-

loon is reproduced quite accurately, a prerequisite for any
trustworthy treatment of the problem. A further deci-

sive simplification is possible. The experimental results

[6] show that spiral chaos is described in Fourier space

by modes with wave vectors q lying in an annulus, where

[q~ stays virtually within the stability boundaries in Fig.
1. Nonlinear interactions lead to the excitation of modes
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FIG. 1. The Busse balloon for Pr= 1 (dotted line: rigorous

computations; solid line: 5 mode approximation). Included is

the average wave number q, (e) of the patterns from experi-

ments (dashed line) [6] and from simulations (stars).
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the toroidal part g is often interpreted in terms of
"mean flow" or "mean drift" effects. Using the stan-
dard Galerkin technique to satisfy the horizontal bound-

ary conditions, f is expanded in terms of Chandrasekhar
functions Cn(z) and 8, 9 in terms of trigonometric func-

tions (or polynomials) with respect to z [3]. In a minimal

description the expansion has been truncated as follows:

8(r, z) = 8i(r) sin (7r(z+ 2)) +

82(raisin

(2n(z + 2)),
f(r z) = f (r)& (z)+ f2(r")&2(z)

9(r z) = 9(r)(z' —4)
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with much smaller weight at q = 0 and q
—2q, . A cut-

off in wave number space at q = 2.5q, turns out to be
sufficient.

Since we were interested in generic features, the result-

ing equations have been simulated mainly in a square
with linear dimension L and periodic boundary condi-
tions in the horizontal (r) directions. All derivatives are
performed in Fourier space and the nonlinearities are
evaluated by pseudospectral methods and fast Fourier
transformation (FFT). To solve for the time dependence
we have chosen a fully implicit scheme for the linear

terms, whereas the nonlinear parts have been treated
explicitly (second order Adam-Bashforth method). The
typical time step was & 0.04t„(t„ac.1.3 sec in the exper-
iments [6]). The results presented below are mostly based
on N = 256 Fourier modes in each horizontal direction
for the five coefficient functions. The FFT was typically
truncated at q = 2.5q, corresponding to an aspect ratio
I' =

~&
——

~ (i.e., I' = 50 for N = 256). Even runs

on a 128 x 128 mesh (I' —25) already reveal a chaotic
spiral state, with less than three spirals on the average
in the cell. We have checked our results by changing the
time steps, the cutoff q (up to 5q, ), and N (also time
consuming runs with N = 512 were performed).

In Fig. 2(a) a typical snapshot at 500t„(I'= 50) is

shown, generated by small random initial conditions for

e = 0.7, which apparently reproduces all experimental
features [see Fig. 2(b)]. The initial buildup of a spiral

pattern ("temporal change of the amplitude" ) was sur-

prisingly fast (& 30t„).The typical time scale of the sub-

sequent persistent dynamics, judged from visible changes
of the patterns ("temporal change of the phase"), was es-

timated to be 20t„,in agreement with the experiments

[9]
The patterns (for smaller e see below) have been ana-

lyzed quantitatively in close analogy to the experimental
work [6]. At first the mean wave vector qav(e) was ex-
tracted from S(q), defined as the azimuthal and time
average of the structure function S(q) = ]ei(q) ]. Our
values of q~ coincide well with the experimental results

(see Fig. 1). The Lorentz-type wave vector distribution

S(q) shown in Fig. 3 for e = 0.7 seems to respect the two

border lines of the Busse balloon. The inverse width f
of S(q) as a function of e is in excellent agreement with

the experimental result ( = 2.4e o 4sd [6]. The time con-

suming analysis of the dynamical structure function has

been performed only for e = 0.7 and revealed rather an

exponential decay with a correlation time ~...= 18t„at
the maximum of S(q) [the experiments yield (13 6 3)t„
[9]]

We have tried to get an impression of the spiral-defect-
chaos attractor by changing e and the initial conditions.
Above e & 0.5, for N = 256, one always gets to spi-

ral chaos as long as no preferred direction is singled out

(e.g. , starting from random initial conditions or from a
collection of roll patches with different orientations in

space). Below e & 0.5 the system develops into clearly
different plan forms with very few defects (dislocations,
grain boundaries) with q, (e) & q, . The appearance of
spiral chaos is also correlated with the aspect ratio I', it
is found for e & 0 45 if I' = 100 and for e & 0 65 if I' = 25,
a tendency in agreement with experiments [7]. There is

no difference when the simulations are confined to a large
circular domain [10] and the characteristic snapshots for

different t shown in Fig. 4 are very similar to the corre-
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FIG. 2. Snapshots of the temperature field 8q from simula-
tions (a) at &=0.7, Pr= 1 compared with experimental results
(b) (a=0.72, Pr=0.96) (with courtesy from [6]).

FIG. 3. Wave vector distribution S(q) for e = 0.7. Included
are the corresponding Eckhaus (E) and the skewed-varicose

(SV) limits.
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FIG. 4. Snapshots of the temperature field Oi from simu-
lations for s = 0.3 (left) and s = 0.7 (right) (Pr= 1.0).

sponding experimental ones [6]. But the scenario changes
drastically, if one initially imposes a preferred direction,
e.g. , a periodic roll pattern. Even an initial superposi-
tion of noise with a strength of 80% of the roll amplitude
is not sufficient to prevent the eventual recovery of the
stable roll-pattern attractor at t = 0.7.

The typical persistent dynamical behavior of the con-
vective heat flux H [proportional to 8z(q = 0)] and the
"kinetic energy" K of the mean flow [spatial average of
]Vg(r)~ ] (see [11,12]) for a small circular cell (I' = 25)
with spiral chaos is shown in Fig. 5. The heat flux is re-
duced on the average by 25% in comparison to the ideal
roll-pattern case with maximal fluctuations of the order
of 3% on a time scale of the order of the horizontal dif-
fusion time th, = I' t„Inanal. ogy to Refs. [11,12] H
and K are often anticorrelated, where an increase of K
is related to fairly free moving spirals, which then get
captured and destroyed at the boundaries, a process also
found for other defects in experiments [4,13,14].

There is no doubt that the coupling to the mean flow

(g), which is proportional to Pr ~ and increases roughly
proportional to c, is crucial for spiral chaos at medium
Pr [and also for the correct shape of the Busse balloon
with respect to the skewed-varicose (SV) instability line

[3,15]]. Merely frozen-in labyrinthic patterns were ob-
served at large Pr (= 6) or when g was disregarded. The
field g, which has extrema at the positions of the spirals
and also becomes large where rolls bend strongly [ll],
has not been plotted, because it gave no further insight
at the moment.

Our approach also allowed us to deduce a kind of min-

imal description, which reproduces essentially the above
results. Focusing on the amplitudes A(q, t) of the fastest
growing modes above threshold turned out to be satis-
factory, whereas all other modes are slaved adiabatically.
A(q, t) is then determined by an order parameter equa-
tion in Fourier space [16]. A transformation to real space
becomes possible, if singular terms in the ensuing gradi-
ent expansion are absorbed systematically in a separate
equation for g [17,18]. Unfortunately one needs in addi-

tion a large number of gradient terms in the cubic non-

linearities of the resulting generalized Newell-Whitehead
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FIG. 5. Kinetic energy K of the mean How and the convec-
tive heat current H for e = 0.7 and N = 128. The mean value
of both quantities is shifted to 0.5, with otherwise arbitrary
units.

equations [19] to map the Busse balloon accurately up to
e = 1 [18].

The first to point out the importance of mean-flow
eKects and isolate them explicitly in the amplitude-
equation formalism were Siggia and Zippelius [20] in the
case of stress free boundary conditions (see also [21]).
Later on isotropic generalizations of the amplitude equa-
tions [of the Swift-Hohenberg (SH) type [22], but includ-

ing mean-flow effects] were introduced [23,24] which ex-
hibit complex spatiotemporal behavior [11,25]. In recent
remarkable papers [26,27] it was shown that also the sce-
nario of spiral chaos is contained in model equations of
the SH type. A quantitative comparison with the experi-
ments by adjusting the model parameters [2?] is not quite
conclusive in our opinion [28]. First, the strength of the
coupling to g is overestimated by a factor of about 4 [29],
which might explain the appearance of the spiral chaos
already at e = 0.25 in contrast to the experiments. More-
over, the stability balloon is dissimilar to the correct one
[30]. In particular the SV line does not bend back with
increasing s (see Fig. 1). More serious is the occurrence
of an unphysical short-wavelength cross roll instability
in the model, which renders almost the whole regime

q ) q, unstable. This also pushes q,v to the left, but
too strongly (q~ = 0.8q, instead of 0.92q, at e = 0.25 in
the experiments). Nevertheless, these model calculations
are of considerable importance, since they show that the
scenario of spiral chaos is of surprising robustness.

In conclusion, we have shown by detailed evaluation
of our simulations (in comparison with the experiments)
that the spiral chaos is an intrinsic attractor of the
Boussinesq equations. This state is attained most eas-

ily starting from random initial conditions, if the aspect
ratio is not too small. At least for Pr- 1 we strongly
believe that a cooperative interaction between roll cur-
vature and mean flow (some ingredients of which are de-

scribed lucidly in [11]) is responsible for the persistent
defect dynamics. It is important that in view of our
calculational method further theoretical analysis will be
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simplified considerably. Our results show that the verti-
cal structure of the fields is not crucial and that periodic
boundary conditions can be used. It is also important
that the so called non-Boussinesq (NB) effects (temper-
ature dependence of material parameters, which destroy
the up-down symmetry [31]) need not be taken into ac-
count, at least for Pr l.

To characterize a more specific mechanism for the oc-
currence of the spiral-defect-chaos attractor and in par-
ticular under which conditions it is likely to show up in
the experiments at the expense of the periodic roll pat-
terns, further time-consuming simulations are necessary.
In addition, we plan to implement NB effects into our
treatment, which would also allow us to assess the com-
petition between spirals and hexagons [26,32,33]. Then
also the "many target" and spiral patterns, observed at
larger c and Pr, whose existence is tentatively attributed
to NB effects [34], should be found.
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addition very grateful to I . Kramer for carefully reading
the manuscript. We are further indebted to G. Ahlers,
E. Bodenschatz, and S. Morris for numerous suggestions,
detailed information about the experiments, and for pro-
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