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Localized Structures and Localized Patterns in Optical Bistability

M. Tlidi, Paul Mandel, and R. Lefever
Faculte des Sciences, Universite Libre de Bruxelles, Campus Plaine C.P. 892, B-2050 Bruxelles, Belgium

(Received 2 August 1993; revised manuscript received 20 April 1994)

%e study numerically a Swift-Hohenberg equation describing, in the weak dispersion limit,
nascent optical bistability with transverse efFects. We predict that stable localized structures, and
organized clusters of them, may form in the transverse plane. These structures consist of either
kinks or dips. The number and spatial distribution of these localized structures are determined
by the initia1 conditions while their peak (bottom) intensity remains essentia1ly constant for fixed
values of the system's parameters.

PACS numbers: 42.65.Pc, 42.60.Mi

At the onset of optical bistability, there is a critical
point where the output versus input characteristics have
an infinite slope. The vicinity of this critical point is
characterized by critical slowing down [1]. This implies
that the dynamics of the system is dominated by a char-
acteristic decay time which is of geometrical origin. It is

inversely proportional to the deviation from the critical
point and diverges at criticality. Thus in the vicinity of
the critical point, all atomic and cavity decay times are
associated with fast decays. Let (X, Y, C) be the de-

viations of the cavity field, of the injected field, and of
the cooperativity parameter with respect to the values of
these quantities at the critical point:

Swift-Hohenberg equation [3], though some of them have

been reported for other (nonvariational) models studied
in chemistry and hydrodynamics [4,5], and for the corn-

plex Ginzburg-Landau equation [6—9]; see [10], for a re-
view on this topic.

The situation which interests us requires that 6 ) 0

(or equivalently that a, ) ~, ) a,). Notably, in that
case, the transverse Laplacian term in (2) is destabiliz-

ing and allows for the formation of stationary, spatially
periodic patterns characterized by an intrinsic wave-

length solely determined by dynamical parameters and
not by the system's physical dimensions or geometrical
constraints (Turing instability, [ll]). Using the t) expan-
sion, based on the distance from the Turing bifurcation
point as the smallness parameter [12], we have analyt-

ically determined the variety and the stability proper-
ties of the patterns which are solutions of Eq. (2) in the
weakly nonlinear regime where the Turing bifurcation is

supercritical [13]. This analysis restricted the values of
the cooperativity parameter to the range

X, = v3(1+id),Y, = 3V3(1+6'),
C, = 4(1+ 6'). (1)

In these expressions, 6—:(u, —u, )/p~ = —8 = —(~, —
a, )/r, where ~ (~„v,) is the atomic (external, cavity)
frequency while p~ and K are the atomic polarization and
cavity decay rates. It has been demonstrated recently [2]
that in the double limit of weak dispersion ([ 6 [(( 1)
and nascent bistability ([ C [(( 1), the spatiotemporal
evolution of the electric field X obeys an equation of the
Swift-Hohenberg type: in which, furthermore, the homogeneous steady states

necessarily are monostable, whatever the value of the in-

put field y is, We proved that under those conditions,

the only stable patterns forming in bidimensional trans-

verse systems are those which either have the hexago-

nal symmetry or consist of stripes. The results reported
below describe the behaviors predicted on the basis of

Eq. (2) for C,„b& C, i.e. , in the strongly nonlinear

regime where the Turing bifurcation is subcritical, and

where the homogeneous steady states may be monostable

(C,„t,( C ( 0) or bistable (0 ( C). They are obtained by

integrating (2) numerically for periodic boundary condi-

tions, with a pure implicit Euler scheme supplemented

by a finite difference method [13].
We first examine the case of a one-dimensional mono-

stable system [cf. Fig. 1(a)]. The homogeneous steady

states X, undergo a Turing bifurcation either at yT
when the input field is increased from below or at yT+
when it is decreased from above. Accordingly. ill the

where t is a dimensionless time, y = Y — 2, and Z~ is

the transverse part of the I aplacian. Though this kind

of equation is well known as a (variational) model for the
near threshold dynamics of some hydrodynamical insta-
bilities, its relevance in nonlinear optics has only been
established recently [2]. The purpose of this Letter is to
use Eq. (2) to predict the occurrence of stable station-
ary localized structures in optical devices in the vicin-

ity of C, . These structures consist of kinks (or dips) in

the amplitude of the cavity field. They may either be
spatially independent and randomly distributed or oc-
cur in clusters forming well-defined spatial patterns. We
find that kinks and dips are also bistable when the ho-

mogeneous steady state solutions of (2) exhibit bistabil-

ity. None of these structures has yet been found for a

X 2 4

t
= 4y+ X(C —X ) —4hl:gX — l:gZgX, (2)—

3
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with

QTy = 3hz —2C C

12 ' 3'XTy, XTy = 6 bz+ —, (4)

there exists a finite band of Fourier modes k,

k2 & k~ & k+2

with

3D + /3(342 —3X2+ C)
k~ ——— (5)

which are linearly unstable and trigger the spontaneous
evolution of X towards a stationary, spatially periodic
distribution which occupies the whole of the cavity space

FIG. 1. 1D bifurcation diagram and localized structures
in the monostable case (b, = 0.1, C = —0.001). (a) The
full and broken lines correspond, respectively, to the stable
and unstable homogeneous steady state solutions. The cir-
cles indicate the maximum (minimum) amplitude of the Tur-
ing solutions. (b) Single localized structure obtained after
perturbing the stable homogeneous steady state in the sub-
critical region at one grid point (y = —0.0004, amplitude of
the perturbation bX = 5). (c) Localized pattern obtained
after perturbing the homogeneous steady state at three grid
points (y = 0.0004, AX = 5). (d) The homogeneous steady
state is perturbed at one grid point (b,X = —5, y = 0.0004).
(e) The homogeneous steady state is perturbed at three grids
points (EX = —5, y = 0.0004).

I I I
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FIG. 2. (a) Number n of localized structures obtained after
two perturbations are applied at two grid points separated
by a distance d. (b)—(e) Localized structures obtained for
difFerent values of d (y = 0.0004, AX = 5).

available in the transverse direction. This solution is of
finite amplitude [represented by full dots in Fig. 1(a)]
in its entire domain of existence and stability. For y,
this corresponds to the interval yL, ( y ( yL,+. At the
turning points y = yr, y, it connects with the unstable
periodic solutions [not represented in Fig. 1(a)] branching
ofI' from the homogeneous steady states at y = ygy. The
existence of the latter is obviously restricted to y values
lying in the subcritical domains B and B'.

Figures 1(b)—1(e) illustrate a remarkable property of
the domains B and B', namely, that they are regions
where the system exhibits multistability: besides the ho-
mogeneous steady states and the Turing patterns, which
are both stable, an additional variety of stable patterns
can be obtained. These localized structures are specific
of B and B' in that they consist of kinks, as in Fig. 1(b),
or of dips, as in Fig. 1(d), which join the Turing branch
of bifurcated states [cf. dots in Fig. 1(a)] to the stable
homogeneous steady states. The number and spatial dis-
tribution of kinks (or dips) immersed in the bulk of the
basic homogeneous state depend on the initial conditions
considered. Their peak (bottom) intensity remains, how-
ever, essentially constant for fixed values of the system's
parameters. These features are exemplified in Fig. 1(c)
[1(e)], which is obtained for the same values of the pa-
rameters as Fig. 1(b) [1(d)), but with a different initial
condition. In Fig. 2, we see how the number of peaks
obtained after two identical, largely suprathreshold, per-

641



VOLUME 73, NUMBER 5 PH YSICAL REV I E% LETTERS 1 AUGUST 1994

{a)
0.25-

X 0-

-0.25 =

I
I
I
I
I
I
I

goo
I
I

s a
I T I I~I ~ B' I~I ~ ~ ~ ~I
I ~ I
L~yyloo+ ~ +++

~ gyes ~)~ 1
I I = = —

~

I
I I

C I I I
I I I
I ~ I I
I 1~ I

I I iy'+ I

~ Q )Q ~ Q ~ 0
I I

~ ~ I I
I ~ I I

(b)

-1.5 yL pT, QT pL, 1.5
'ff x10

(d)

0.1 .
X

-0. 1

I

25
I

50
Space

I

75

turbations of the homogeneous steady state depends on
the distance d between them. The parameters have the
same values as in Fig. 1, which corresponds for the Tur-
ing patterns to a wavelength A = 13.5. As reported in
Figs. 2(a)—2(d), the number n of kinks observed in the
localized structure reached for t ~ oo is, up to n = 4,
approximately given by the relation n = djA. Thus, if
d & 45, the evolution of the perturbations is strongly
correlated which leads to localized patterns in which up
to four peaks develop and remain clustered together. If d
increases further, the perturbations evolve independently
and the final pattern simply consists of two peaks whose
localization corresponds to that of the two initial pertur-
batlons.

Similar behaviors are found when the homogeneous
steady states exhibit bistability, i.e. , when 0 ( C (cf.
Fig. 3). In addition, however, in that part of the bistable
domain where B and B' overlap [labeled T in Fig. 3(a)],
kinks and dips exibit bistability [see Fig. 3(b)]. In
other words, under those conditions, five distinct kinds
of steady states are stable: the upper and lower branches
of homogeneous steady states, the Turing patterns, and

FIG. 3. 1D bifurcation diagram and localized structures in
the bistable case (b, = 0.1, C = 0.025). (a) The full and bro-
ken lines correspond, respectively, to the stable and unstable
homogeneous steady state solutions. The circles indicate the
maximum (minimum) amplitude of the Turing solutions. (b)
Coexistence of kink and dip for y = 0. Depending on the
initial condition, the system evolves to either one of these
solutions. It is worthwhile to stress that the domain of coex-
istence between kinks and dips is not restricted to the value

y = 0, but extends to the entire range for which B and B'
overlap, i.e. , the domain labeled T.

FIG. 4. Localized structures and patterns with two trans-
verse dimensions (6 = 0.1, C = 0.025, and y = —0.0005) . (a)
Single localized structure (AX = 5, 60x 60 grid). (b) Random
distribution of localized structures; the system is perturbed
by small amplitude (X = 0.92, DX = 0.05, 60 x 60 grid).
(c) Localized pattern (centered hexagons). The steady state
is perturbed at seven grid points. (d) Localized pattern (three
centered hexagons, 100 x 100 grid).

the upper (dips) and lower (kinks) localized patterns.
In 2D, the set of localized solutions is necessarily much

larger. A single localized structure is shown in Fig. 4(a).
Figure 4(b) shows that the final stable solution, which is
obtained with an initially random distribution of ampli-
tudes, displays a random distribution of localized struc-
tures. More interesting is the emergence of localized pat-
terns, which are organized clusters of localized structures.
We find that the centered hexagon. , shown in Fig. 4(c),
is a remarkably stable structure composed of seven local-
ized peaks, each of which is similar to that of Fig. 4(a).
Depending on the initial condition, we have also been
able to find stable solutions with a, few (typically two or
three) centered hexagons far away from each other [see
Fig. 4(d)]. Here again, we stress that the position of the
centered hexagons depends on the initial conditions: they
are stable against variations of their positions. The de-

pendence of the localized structures and patterns on the
initial condition is apparent in Fig. 4 where the four pic-
tures dier only by the initial condition. Because of this
fact, all maxima in Fig. 4 have the same value, though
the widths of the peaks and the ringing [i.e. , additional
but smaller maxima as seen clearly in Figs. 1(b) and 1(c) ~

are reduced as the number of localized structures or pat-
terns increases. Indeed, we have verified that within nu-

merical accuracy the integral of X over the transverse
dimension(s) is constant. In terms of the complete 3D
system, the localized structures correspond to filaments
and the fact that their peak power is the same irrespec-
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tive of their number and may be an asset for applications
dealing with information processing.

Most useful discussions with M. Georgiou are grate-
fully acknowledged. This work has been supported in
part by the Interuniversity Attraction Pole program of
the Belgian government and by the Fonds National de la
Recherche Scienti6que.

[1] P. Mandel and T. Erneux, Opt. Commun. 44, 55 (1982);
for a complete linear stability analysis of optical bistabil-
ity, see L. A. Lugiato and C. Oldano, Phys. Rev. A 37,
3896 (1988).

[2] P. Mandel, M. Georgiou, and T. Erneux, Phys. Rev. A
47, 4277 (1993).

[3] After submission of this paper, we received a preprint
submitted to Physica D by L. Yu. Glebsky and L. M.
Lerman entitled "On the small stationary self-localized
solutions for generalized 1D Swift-Hohenberg equation, "
where the authors establish analytically the existence of
small amplitude localized structures for a class of gen-
eralized 1D Swift-Hohenberg equations to which Eq. (2)
belongs.

[4) S. Koga and Y. Kuramoto, Frog. Theor. Phys. 63, 109
(1980); V. Hahim, P. Jakobsen, and Y. Pommeau, Euro-
phys. Lett. 11, 19 (1990); G. Dewel and P. Borckmans,

in Far from Equilibrium Dynamics of Chemical Systems,
edited by J. Popielawski and J. Gorecki (World Scientific,
Singapore, 1991), p. 83.

[5] Sadayoshi Toh, Hiroshi Iwasaki, and Takuji Kawahara,
Phys. Rev. A 40, 5472 (1989); O. Thusl and S. Fauve, J.
Phys. (Paris) 49, 1829 (1988); A. V. Gaponov-Grekhov,
A. S. Lomov, G. V. Osipov, and M. I. Rabinovich, in
Nonlinear 8'aces, edited by A. V. Gaponov-Grekhov, M.
I. Rabinovich, and J. Engelbrecht (Springer, Heidelberg,
1989), Vol. 1, p. 65.

[6] G. S. McDonald and W. J. Firth, J. Opt. Soc. Am. B 7,
1328 (1990).

[7] N. N. Rosanov and G. V. Khodova, J. Opt. Soc. Am. B
7, 1057 (1990).

[8] D. W. McLaughlin, J. V. Moloney, and A. C. Newell,
Phys. Rev. Lett. 51, 75 (1983).

[9] P. Coullet and K. Emilson, Physica (Amsterdam) 61D,
119 (1992).

[10] Nonlinear Dynamics and Spatial Complexity in Optical
Systems, edited by R. G. Harrison and J. S. Uppal (In-
stitute of Physics, Bristol, 1993).

[11] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209
(1987).

[12] P. Manneville, Dissipatiue Structures and Weak Turbu
lence (Academic, New York, 1990).

[13] M. Tlidi, M. Georgiou, and Paul Mandel, Phys. Rev. A

48, 4605 (1993).

643




