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Cosmological No-Hair Theorem
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A generalization of Price s theorem is given for application to inflationary cosmologies. Namely,
we show that on a Schwarzschild —de Sitter background there are no static solutions to the wave or
gravitational perturbation equations for modes with angular momentum greater than their intrinsic spin.
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A most intriguing feature of gravitational collapse is
the way in which the final state seems to be characterized
by only a few parameters. This is the phenomenon that
Wheeler described as the loss of hair by the black hole [1]
and forms the content of the no-hair conjecture.

Implicit in the no-hair conjecture is the idea that
gravitational collapse reaches a stationary state. This is
supported by a combination of numerical and perturbative
calculations. The part of the no-hair conjecture that has
been proved rigorously consists of uniqueness theorems
for stationary black hole solutions.

Early work on the nonrotating case can be further sub-
divided into global results [2] and the results summarized

by Price's theorem [3]: The only static solutions to the

pure massless wave equations with spin s = 0, 2, 1 or to
the gravitational perturbation equations on a spherically
symmetrical black hole background have angular momen-
tum less than s.

The implication is that all of the other modes are
radiated away during the collapse and that the event
horizon is characterized by the constants of integration
for the remaining modes. For pure gravity these are the
mass perturbation and the angular momentum of the hole
(the initial angular momentum being zero).

In this Letter we will present a generalization of Price' s
theorem for black holes in asymptotically de Sitter space-
times. These black holes have been of interest recently
because there are situations in which they form naked
singularities [4—7]. However, the overriding reason for
looking at no-hair theorems with a cosmological constant
is because of their role in inflationary models of the early
Universe.

The cosmic no-hair conjecture states that in the pres-
ence of a cosmological constant the universe evolves into
a de Sitter universe [8,9]. This would imply that infla-
tion is a natural phenomenon that can explain the isotropy
and homogeneity seen in the Universe on large scales.
In point of fact this simple version of the cosmic no-
hair conjecture is violated simply by generalizing the
Schwarzschild spacetime to include a cosmological con-
stant [10]. Valid cosmological no-hair theorems can be
obtained, however, for the homogeneous universe [11,12]
or else in the vicinity of an infinitely future extendable
world line [13].

where

5 = r —2Mr —3Ar .2 1 4 (2)

There are two horizons where 6 vanishes, a black hole
event horizon at r = r2 and a cosmological horizon at
r = rl. The metric approaches de Sitter space as r

Fortuitously, all of the relevant equations on this
background now exist in the literature [4,7]. We begin
with the pure spin s wave equations. In SL(2,C) spinor
notation,

@AB"C
p (3)

The field has 2s symmetrized indices and therefore 2s +
1 independent components, which we label W„, n =

S j ~ ~ ~ j $0

It is also possible to derive global uniqueness theorems
for stationary solutions to the Einstein equations for
gravity with a cosmological constant [14,15]. What has
not been achieved so far is a theorem of this kind with
weak enough conditions at infinity that would allow black
holes and generalize the uniqueness theorems for static
solutions in asymptotically flat spacetimes [2].

If the earliest stages of our Universe were very chaotic
then parts would have been collapsing under the influence
of gravity while others were expanding [16—19). It would
be desirable to understand how the formation of black
holes would affect the inflation going on around early
episodes of gravitational collapse.

We will prove the generalization of Price's theorem
first and then discuss the approach to de Sitter space
outside the hole: The only static solutions to the pure
massless wave equations with spin s = 0, 2, 1 or to the
gravitational perturbation equations on a Schwarzschild-
de Sitter background have angular momentum less than s.

The proof requires the explicit forms of the wave equa-
tions on the Schwarzschild —de Sitter background. The
background metric is a vacuum solution to the Einstein
equations with a positive cosmological constant A,

ds2= r2hdt +—r 6 'dr + r (de + sin ed/ ),
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We take

'P„=r 'R„(j,or;r)S„(j,m;8)e' (4)

the Laplacian on the sphere with eigenvalues jII j —
I I

and half integer angular momenta j.
The equations for the radial functions on a Kerr —de

Sitter background were analyzed recently in Ref. [7]. In

the Schwarzschild —de Sitter limit they are

where the angular functions are spin n eigenfunctions of

23 „i2623„r2+ 2(2n —1)iorr + 2(2n —1)(n —1) Mr ' -- , Ar' —R„-=-g„R„

for1 —s~n ~sand

X)„i2bD „i2—2(2n + 1)iorr + 2(2n + 1)(n + l)(Mr ' — , Ar )—R„=A „R„

for —s ~ n ~ s —1, with A„=(j + n)(j —n + 1).
For s = 0, which is excluded by the inequalities,

17p 5 X)p 2l or r Rp = ApRp . (7)

The operator 27„is a radial derivative,

i cu r""D„=Rr — + n —.
[In Kerr —de Sitter the mass term on the left of Eqs. (5)
and (6) mixes radial and angular modes. Therefore the

examples quoted in Ref. [7] were all cases where this term
vanished. We have also shifted the subscript on W by s.]

In the static case we have ~ = 0. The equations
have regular singular points at both horizons r = r~ and

r = r2 where 6 vanishes. At these singular points R„=
o(g~n/2)

Suppose that Eq. (5) has a solution that is regular at

both r = r& and r = r2. If we multiply the equation by
Rt and integrate between the two horizons then

If s = 1, for example, then only 'ko can have a static
value. The solution for the radial modes with j =- 0 is

Rp =- Q/r, where Q is a constant. This represents the

radial electric field of a point charge.
The perturbed Einstein equations are different from the

pure spin 2 wave equation. We follow the discussion in

Ref. [20], and decompose the metric perturbations into

polar and axial perturbations depending on their behavior
under P -. —P. For the polar perturbations

Bg„„=2r b 'L(r)PI (8).

Bggg = 2r [T(r) + U(r) Bgrrej P~(8I, ( l3)

Bg~~ = 2r sin 8 [T(r) + U(r) cot 8 Bg j Pl(8) . (14)

All of the functions T(r), L(r), and U(r) are related by the

Einstein equations to a single function,

Z (r) —rU(r) —r' (A2r + 6M) [2L(r) + A~U(r)j .

(b(23„i2R„)(27„i2R„)+ V(r)R„R„)dr

—[aRt27„&,R„j"„'= 0,

where

V(r) = (2n —l)(n —1)(r 5 + Ar ) + e( j, n) (10)

For the axial perturbations we set

Bg„g= r 6 'A(r') sin& dgP((0),

Bg|r@ = r 5 'B(r) (sin& Bz —cos8 dtr) P~(8), (17)

and

e(j, n) = A„—(2n —1)(n —1).

and define Z (r) = [A(r) —B(r)'j/r Again, A(r) and.
B(r)can be found given Z (r)

The perturbed Einstein equations for a charged black
hole de Sitter background were derived in Ref. [4]. With

the charge set to zero these reduce to

The boundary term vanishes for the regular solutions.
If j~s)0 then A„s~+n and V(r)~0 for n=
0, 2, 1. If s = 0 then V(r) = j(j + 1) ~ 0. These are

only consistent if R„vanishes identically and therefore
there are no solutions for j ~ s and n ~ 0. The same
conclusion follows for negative n from Eq. (6). This is

the result that was required.

d Z
dr*2

+ V (r)Z = or Z

where dr" = r~dr/6 The potentials are given. by

V (r) = ~6MB„,f + 36M f + A(r12 i- 2)f . (19)
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where

(A2r + 6M) r (20)

The equations are identical in form to the equations
that are obtained for A = 0. The cosmological constant
appears only in A.

It is possible to transform these equations into a similar
form to the previous set. For ~ = 0 define

p 3

R = —[V (r)Z + W (r)B Z j (21)

with

W (r) = 8„—.lnf ~ 6Mf. (22)

The equations for R are then

17 th17) —2Ar R~ = A2Rp,t

13 ~517~ —2Ar R = A2R

(23)

(24)

These are also the equations for the n = ~2 compo-
nents of the Weyl tensor that were derived in Ref. [7].
Proceeding as before, we find that there are no solu-
tions for R that are regular on both horizons apart from
R = 0. Setting R = 0 [see (21)] leads to regular solu-

tions for Z only in the case where j = l and logarithmi-
cally divergent solutions (sufficient for regular L and U)
when j = 0. Therefore the theorem is proven.

The way in which the spacetime around a collapsing
star settles down to the static spacetime is somewhat
different from the situation in flat space. The Penrose
diagram in Fig. 1 shows the collapse of a spherical star to
form a black hole. The metric has been continued beyond
each horizon by introducing Kruskal coordinates. Null
coordinates are defined by u = t —r' and v = t + r',
where dr* = rzdr/5, and the Kruskal coordinates are

U~ = —e "'" and V] = e"'"

U2 = —e " and V2 = e

(25)

(26)

where ~2 is the surface gravity of the event horizon.
The values of various field components can be taken to

be given on the stellar surface and then will propagate into
the exterior spacetime. The surface of the star begins to
collapse at Q = Llo and lies close to a null surface v = vo
as it approaches the event horizon. In this time —dependent
problem we let 4(j,m, n; r, t) be a field component with
fixed angular eigenvalues j and m.

Each mode of the field should remain analytic in the
Kruskal coordinates, and therefore on the surface of the
star;

FIG. 1. Penrose diagram for a star collapsing in a de Sitter
universe. The collapse starts at retarded time Qp and the data
approach the asymptotic form by u&. The diagram extends
beyond the edges of the figure.

F (u) —Fp + F~e "'" as u ~ ~,
G (v) —Gp + G~e "'" as v ~ ~.

(28)

(29)

The modes that are represented by these expansions have
frequencies —iK2 and —iK~ as well as zero. Therefore
after transmission to the future horizons they become

infinity. In de Sitter space the constant modes propagate
all the way to the cosmological horizon.

The surface of the star and the past cosmological
horizon S form the initial data surfaces. If the star is
removed, the complete black hole de Sitter spacetime has
a past event horizon A as well as a future event horizon.
Close to the horizons the radial modes with frequency
tp become plane waves R„—r 'e-'"" . We can define
separate reflection and transmission amplitudes R(tp) and

T(cu) for modes which propagate from the past event
horizon, denoted by and for modes which propagate
from the past cosmological horizon, denoted by ~.

The initial data correspond to specifying two functions
F(u) and G(v) on 9f and S . These are analytic in U2

and V& ', the Kruskal coordinates that vanish near A+
and S+, respectively,

g) p + p
N'pM (27)

r4(~, v) 1 + R(0) Fp + T(0)Gp + R( i~2)F~e—
The only modes which have Pp nonzero are those with

j ( s. In Oat space the constant modes cannot reach + T(i~~) G~e (3o)
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KEY:

de Sitter Space

In inflationary models the cosmological constant is

present for only a limited period but numerical studies of
spherically symmetric and axisymmetric models [18,19]
indicate that there is enough time for massive inhomo-

geneities to collapse and form stable black holes before
the inflation comes to an end. Thus it seems possible to
have a picture of the early Universe in which many inho-

mogeneities separated by distances comparable to the cos-
mological horizon scale were collapsing into black holes
while other regions of the Universe were in]]ating [16].
Radiation from the collapsing material would mostly have

been damped away by the exponential expansion in the

surrounding spacetime before the end of the inflation-

ary period (Fig. 2). Observers outside of the black holes

whose world lines extended far into the future would have

seen a universe that increasingly appeared to be de Sitter.
We are grateful to Patrick Brady for discussing some

of the issues raised here. C. Chambers is supported by
EPSRC of Great Britain.

outgoing radiation

horizons A „

FIG. 2. Penrose diagram of de Sitter spacetime with many
distinct collapsing lumps and their radiation fields. Most
observers see a universe that approaches the de Sitter universe
asymptotically.

r4(u, ~) — 1 + R(0) Gp + T( )0Fo+ R( —iK])G] e

+ T(i trz)Fe

In the asymptotically flat case the corresponding transmis-
sion amplitudes are of order ~~+' for small omega and

the constant modes are trapped. The present case is much

more similar to the scattering in the interior region of a

charged black hole [20], from which we can deduce that

T(0) 4 0, T(0) 4 0, T( iK&) = T( iKz) = 0. (32)

In other words, the constant modes are transmitted to
the cosmological horizon but the exponentially decaying
modes are not (compare Ref. [21]).

Finally, the radiation emitted during the collapse of the

star propagates through the future cosmological horizon
and out to infinity. This radiation lies principally between
two retarded times uo and u&. In the vicinity of future in-

finity the r coordinate is timelike. It can be related to the
Robertson-Walker (k = 1) cosmological time coordinate r
and radius g by r = n cosh(r/n) sing where n '= 3/A. -

Asymptotically, the modes are bounded by 1/r and there-
fore the amplitudes seen by an observer at fixed p de-
crease exponentially in 7- with a decay time scale a.
620
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