
. . HYSICAL .REVIEW

VOLUME 73 1 AUGUST 1994 NUMBER 5

There Are No Causality Problems for Fermi's Two-Atom System
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A repeatedly discussed gedanken experiment, proposed by Fermi to check Einstein causality, is
reconsidered. It is shown that, contrary to a recent statement made by Hegerfeldt, there appears no
causality paradox in a proper theoretical description of the experiment.
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In a recent Letter [I] Hegerfeldt discusses a gedanken
experiment proposed by Fermi to determine the speed by
which causal influences propagate. He argues that the
theoretical description of this experiment in terms of tran-
sition probabilities leads to results which are in conflict
with the existence of a maximal propagation speed c.
Hegerfeldt suggests that the difficulties might disappear
if one drops an implicit assumption about the preparabil-
ity of states with certain specific localization properties
[points (a) to (c) of his conclusions]. However, he does
not settle the question whether the theory complies with
Einstein causality.

In this Letter we would like to set forth that there are no
difficulties with Einstein causality in the theoretical set-
ting of relativistic quantum field theory (RQFT). First,
we will explain why the transition probability test con-
sider by Hegerfeldt is not adequate for a thorough dis-
cussion of causal effects: what is required is a compari-
son of expectation values. Second, we will show that the
points indicated by Hegerfeldt as possible loopholes to
evade causality problems have to be taken seriously in-
deed and require a more careful analysis. Taking these
facts fully into account, we arrive at the conclusion that
there is no conflict between the gedanken experiment of
Fermi and the theoretical predictions of RQFT.

The experimental setup envisaged by Fermi to deter-
mine the propagation speed c of causal influences can be
described as follows (cf. [2] and, for further references,
[1]): one should prepare a state consisting of two atoms
which are localized in disjoint regions separated by a dis-
tance R. One atom shouM be in its ground state, the

other one in an excited state. If causal influences prop-
agate with maximal velocity c one should not observe any
impact of the excited atom on the atom in the ground
state (e.g., by an emitted photon) within the time inter-
val 0 ( t ( R/c. Such events should be observed only
at later times.

It is of importance that the atoms in this experiment
have well defined localization properties. Hence in a
theoretical discussion of the setup one first has to define
in precise terms what one means by the statement that
some physical state S (e.g., the state considered by Fermi,
consisting of two atoms) looks at time t = 0, say, inside
a region R like a given state G (e.g. , like an atom in
its ground state) [3]. From the point of view of physics
the appropriate definition seems to be the following
one: it is impossible to distinguish S from G by any
measurement M which one performs at the given time
in the region R. In the theoretical setting this amounts to
the requirement that the expectation values of all operators
(observables) OM corresponding to these measurements
have to coincide. Hence if r/is, PG denote the Hilbert
space vectors representing, respectively, S and G it must
hold that

(ps IOMI &s& = (&G IOMI &G&

for all such OM. This condition has a clear-cut physical
interpretation, but it involves matrix elements of a mul-
titude of observables. One may ask whether it can be
reformulated in terms of a single observable whose eigen-
vectors corresponding to a fixed eigenvalue, say 0, rep-
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resent all states which coincide with G in the given re-
gion. In other words, does there exist a positive operator,
O~;„„d,~., such that

(2)

if and only if S looks like G inside R'". That such oper-
ators exist is taken for granted by Hegerfeldt; cf. his re-
marks about the projection operator O,s in [1]. But the
situation is not so simple. In fact, there are marked dif-
ferences between nonrelativistic and relativistic theories
which manifest themselves in the following alternative
structure of the set of vectors Ps satisfying condition (1).

(i) Linear combinations of vectors Ps satisfying (1)
again satisfy this condition (after normalization). This
case is generic in nonrelativistic quantum field theory,
where it holds for a total set of states G. These states
describe a situation where one has locally maximal
information about the underlying system (locally pure
states). Examples are the Fock vacuum and all coherent
states. For any such state G one can introduce a
corresponding operator OG;», d, ~ = 1 —g„"=i lps&&ps I,

where Pz, n = 1, 2, . . . , is some orthonormal basis in

the subspace of the physical Hilbert space spanned by
the vectors ps satisfying condition (1). This projection
operator can be used to decide whether some arbitrary
state A coincides with G inside of R: one simply has
to calculate the transition probability &Q~~OG;„,.;d, ~.~p&&

and to check whether it is equal to 0. A positive value
would indicate a local deviation of A from G. Thus
in the nonrelativistic setting there exist operators which

completely fix the local properties of states and it is then
possible to study these properties in terms of transition
probabilities.

(ii) Certain normalized linear combinations of vectors
satisfying condition (1) do not comply with this

condition. This is the case in RQFT for every choice
of G [4]. It is an important consequence of this fact that
all states look locally like mixtures. For let Ps and ps
be vectors satisfying (1) such that cPs + c'Ps no longer
complies with this condition for certain complex numbers

c, c'. As is easily verified there holds

&P+ IOMI P+& + &P- IO»l tt-& = &t(G IOMI (lG&, (3)

analysis of states, which is fundamental in any discussion
of causal effects, on a comparison of states in the sense oI'

relation (1). The nonvanishing of expectation values ol'

positive operators (transition probabilities), as considered

by Hegerfeldt, is not an adequate criterion to study this

issue in relativistic theories [5]. This important point

may be illustrated by a simple example. If G i~„e.g. ..
the vacuum state in RQFT, then the expectation value

&QG~OM~QG& cannot vanish for any positive operator 0»
corresponding to a localized measurement [6]. To test for
a local deviation of 5 from G one can therefore not take
as a criterion that the expectation value of some suitable
projection operator (or, more generally, some positive
operator) has a nonzero expectation value in the state S.
For this expectation value would be nonzero even if the

vacuum G is present. This point has been overlooked

by Hegerfeldt and led him to deduce from Eq. (8) in [ 1 j

an apparent causality paradox. A deviation of S from G
would show up, however, in different values of the left-
and right-hand sides of (1) for some OM [7].

After these general remarks let us turn now to the actual
discussion of Fermi's gedanken experiment. Let X be the

ground state of an isolated atom which is localized in the

vicinity of 0 and surrounded by vacuum and let Px be the

corresponding state vector. Following Fermi, we consider
a state S, described by a vector t)'I&, which looks inside a
ball R of radius R about 0 like X; i.e..

&Os IO»l ks& = (0x IOM~ fx)

for all observables OM which are localized in R. In the

complement R" of this ball S may look like any other
state Y, e.g. , like some excited atom. If, as expected, the

subsystem in R' does not affect the atom in R within

the time interval 0 & t & R/c it should not be possible to

discriminate S from X by any measurement M' which one
preforms at time t within the ball R, of radius R -- ~r

about 0. Phrased differently, S should still look like an

atom in its ground state within the smaller region R, .

Hence, using the Heisenberg picture, it should hold in the

theoretical setting that

&P5 IOM

(t)Items&

= &Px IOM (t)l gx&.

where tt'I- = (2]c(~ + 2(c'(2) '~2(cga ~ c'Ps ). Hence the

expectation values of the observables OM in the state G
can be interpreted in terms of a mixture of states which
differ locally from G. As a matter of fact, every state G
is locally a mixture of an infinite number of such states.
In contrast to the nonrelativistic case, therefore, it is not

possible to fix the local properties of states with the help
of (projection) operators. The assumption that the states
satisfying condition (1) correspond to vectors which are
annihilated by some operator is intrinsically inconsistent
in RQFT.

In view of these facts one is forced to base the local

where

0» (t) = e O»ei 1H /h -- trH! f~

It is a fundamental fact that relation (5) is a consequence
of relation (4) in theories where the underlying field

equations are hyperbolic. Within the setting of RQFT
this fact is called "primitive causality" [8] and has

been established in models; cf., for example, [9]. It is

independent of the spectral properties of the generator 0,
which in fact depend on the systems which one considers
(few body systems, thermal states, etc.). Hence in this
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respect the predictions of RQFT are in perfect agreement
with the ideas of Fermi.

There remains, however, the question of whether the
theory is capable of describing the physical situation
envisaged by Fermi; cf. point (c) in [1]. Given two
vectors Px, Pr corresponding to states X, Y, does there
not exist a vector Ps describing the composite state S
which looks like X in a given region R and like Y in its
complement R'? These requirements fix tiis completely
and can be cast into the following condition on the
expectation values,

(Ps IOst && OM I Ps) —(tiix IOMI &x)(fv IOst I gr) ~ (7)

where OM and Ost. , respectively, denote operators cor-
responding to measurements in R and R'. Relation (7)
gives formal expression to the idea that S is composed of
states X and Y which are localized [in the sense of condi-
tion (1)] in disjoint regions and do not "overlap"; cf. point
(a) in [1].

The question of whether such product states exist is
known in RQFT as the problem of "causal (statistical)
independence" [10]. It has an affirmative answer [11],
but the vectors Ps have in general infinite energy even if
Px and Pr have finite energy. This phenomenon can be
traced back to the uncertainty principle and may be easily
understood in the framework of nonrelativistic quantum
mechanics: if Px and Pr are the configuration space
wave functions of distinguishable systems then the wave
function Ps of the composite state is given by

Ws (*,y)

Jfx(x) Py(y), for x E R y E R',=N X
otherwi se,

where N is a normalization constant. This function has in
general a discontinuity when x or y are at the boundary of
R, unless the wave functions titx and lily both happen to
vanish at these points. (Note that wave functions of states
with sharp energy, such as bound states, in general do
not have such nodes. ) As a consequence, the expectation
value of the Hamiltonian becomes infinite. In RQFT the
situation is even worse because of pair creation. There it
turns out that due to such processes the vector Ps cannot
be an element of the physical Hilbert space 9f describing
few body systems (e.g. , Fock space in free field theory).

Thus the theory predicts that every member of the
ensemble described by S has infinite energy. Hence a
preparation of this state would not be possible in practice.
This fact seems to be in conflict with the ideas of Fermi,
but the apparent difficulty disappears if one notices that
for the determination of c it suffices to consider "tame"
states T which look like X in a region R( and like Y in
R), where R( is slightly smaller an R) slightly larger
than R. It is not really necessary to completely fix the
state T in the layer between these two regions. By making
this layer sufficiently small one can then determine c, as

outlined above, with arbitrary precision.
It has been shown in RQFT under very general

conditions that there exist vectors PT in the physical
Hilbert space A which satisfy condition (7) for the

slightly smaller regions [12]. The existence of such
vectors has also been established in models [13]. Thus
also in this respect Fermi's gedanken experiment poses no
theoretical problems.

It should be mentioned that the states T have to
be carefully adjusted in the layer between the two
regions R( and R) to smoothly interpolate between the

states X and Y and thereby be representable by vectors

pr in the Hilbert space A. This adjustment may be
viewed as the process of "renormalization, " indicated
in point (b) of [1], which surrounds state X by some
"cloud. " In more physical terms, any state of the type
considered by Fermi which can actually be prepared in an

experiment necessarily contains, besides the two atoms,
other particles, e.g. , photons. This inevitable creation of
particles in the process of localizing physical systems is

the basic reason for the absence of locally pure states

and the ensuing uselessness of the concept of transition

probability for the study of local properties. But it is not
at variance with the existence of a maximal propagation
speed c.
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