**Harris, Ong, and Yan Reply:** In 90 K YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (YBCO) we measured a flux-flow Hall resistivity  $\rho_{xz}$  (with field  $\mathbf{H} \perp \mathbf{c}$ ) that is negative, in contrast with  $\rho_{xy}$  (**H**  $\parallel \mathbf{c}$ ) which is positive except within the negativesign anomaly [1]. If the Hall signal derives *entirely* from vortex motion (as we had assumed), the sign change versus the tilt angle  $\theta$  seemed incompatible with the scaling model. However, as Geshkenbein and Larkin (GL) [2] point out, a sign change is possible in a twocomponent model [3] if the Hall conductivity of the vortices  $\sigma_{xy}^s$  and the quasiparticles  $\sigma_{xy}^n$  have opposite signs. GL's scaling relationships provide a semiquantitative way for us to compare data in Ref. [1], and new measurements, with the two-component model, using the conductivity tensor.

We show in Fig. 1(a) the field dependence of  $\sigma_{xy}(\theta, H)$ in an untwinned crystal at 84 K for different values of  $\theta$ . Unlike the nonmonotonic behavior in  $\rho_{xy}$  within the negative-anomaly region,  $\sigma_{xy}$  is strictly monotonic in H at all angles. Starting at very large negative values at the threshold for dissipation,  $\sigma_{xy}$  rapidly decreases in magnitude, subsequently becoming positive. In the high-field limit,  $\sigma_{xy}(0,H)$  approaches the form AH-C/H. This implies that  $\sigma_{xy}^n \sim H$ , while  $\sigma_{xy}^s \sim -1/H$  at high fields. In Fig. 1(b) we test GL's equation  $\sigma_{xy}(\theta, H) = (H_z/$  $\varepsilon_{\theta}H$ ) $\sigma_{xy}^{c}(\varepsilon_{\theta}H)$  by rewriting it as  $\sigma_{xy}(\theta,H)\sqrt{1}+\varepsilon^{2}\tan^{2}\theta$  $=\sigma_{xv}^{c}(\varepsilon_{\theta}H)$ , where  $\varepsilon_{\theta}=\sqrt{\cos^{2}\theta+\varepsilon^{2}\sin^{2}\theta}$ . This equation predicts that curves taken at different  $\theta$  should collapse onto a universal curve when plotted against H. Figure 1(b), in fact, provides striking confirmation of this scaling behavior, with  $\varepsilon = 1/7$ .

A second test of scaling compares the out-of-plane Hall conductivity  $\sigma_{xz}$  to the in-plane Hall conductivity, via  $\sigma_{xz}(\pi/2,H) = \varepsilon \sigma_{xy}^{c}(\varepsilon H)$ . Assuming the validity of this equation, we have converted  $\sigma_{xz}(\pi/2,H)$  into  $\sigma_{xy}(0,H)$ [solid lines in Fig. 1(c)].  $[\sigma_{xz}(\pi/2,H)]$  is derived from  $\rho_{xz}(\pi/2,H)$  and  $\rho_{xx}(\pi/2,H)$ .] For comparison, we also display  $\sigma_{xy}(0,H)$  measured *directly* in an untwinned crystal (broken lines). The agreement between the solid and broken lines is rather convincing, considering that there are no free parameters and that  $\rho_{xz}(\pi/2,H)$  differs greatly from  $\rho_{xy}(0,H)$  in magnitude and field dependence.

The analyses here (and to be reported elsewhere [4]) provide strong support for the scaling model. Near  $T_c$ , a large (positive) quasiparticle Hall current dominates the *negative* vortex term at high fields, whereas the reverse is true at low fields [see Fig. 1(b)] (the additivity applies to  $\sigma_{xy}$  rather than the Hall angle [5]). This competition provides a rather compelling explanation of the negativesign anomaly seen in  $\rho_{xy}$ . By contrast, when  $H \perp c$ , the vortex contribution to  $\sigma_{xz}$  is 10 times larger than  $\sigma_{xz}^n$  at all fields up to 14 T. Hence,  $\rho_{xz}$  is primarily determined by  $\sigma_{xz}^s$ . This scenario also explains the sign change in  $\rho_{xy}$ observed [4] in "60 K" YBCO crystals below 40 K. At low temperatures and high fields,  $\sigma_{xy}$  fits well to -1/H



FIG. 1. (a) shows  $\sigma_{xy}(\theta, H)$  measured at 84 K in an untwinned crystal of 90 K YBCO ( $\theta$  is the angle between **H** and **c**). In (b), we test GL's scaling relationship, written as  $\sigma_{xy}(\theta, H)\sqrt{1+\varepsilon^2 \tan^2 \theta} = \sigma_{xy}^{\varsigma}(\varepsilon_{\theta} H)$ , where  $\sigma_{xy}^{\varsigma}(H) \equiv \sigma_{xy}(0, H)$  and  $\varepsilon_{\theta} = \sqrt{\cos^2 \theta + \varepsilon^2 \sin^2 \theta}$ . All the curves in (a), multiplied by  $\varepsilon_{\theta}/\cos\theta$  with  $\varepsilon = 1/7$ , collapse onto one curve when plotted against *H*. In (c) we display (as solid lines)  $\sigma_{xy}(0, H)$  calculated from the out-of-plane Hall conductivity  $\sigma_{xz}(\pi/2, H)$  via the scaling relationship  $\sigma_{xz}(\pi/2, H) = \varepsilon \sigma_{xy}(0, \varepsilon H)$  with  $\varepsilon = 1/7$ .  $\sigma_{xy}(0, H)$  measured directly in an untwinned crystal is shown as broken lines.

(without the *AH* term). In view of these results, we no longer regard our interlayer-segment model as tenable.

J. M. Harris, N. P. Ong, and Y. F. Yan Department of Physics Princeton University Princeton, New Jersey 08544

Received 14 March 1994

PACS numbers: 74.60.Ge, 74.25.Fy, 74.72.Bk

- J. M. Harris, N. P. Ong, and Y. F. Yan, Phys. Rev. Lett. 71, 1455 (1993).
- [2] V. B. Geshkenbein and A. I. Larkin, preceding Comment, Phys. Rev. Lett. 73, 609 (1994).
- [3] A. Dorsey, Phys. Rev. B 46, 8376 (1992); N. B. Kopnin,
  B. I. Ivlev, and V. A. Kalatsky, J. Low Temp. Phys. 90, 1 (1993).
- [4] J. M. Harris, Y. F. Yan, O. K. C. Tsui, Y. Matsuda, and N. P. Ong (to be published).
- [5] M. N. Kunchur *et al.*, Phys. Rev. Lett. **72**, 2259 (1994). Kunchur *et al.* analyze their results assuming additivity in the Hall *angle*.

0031-9007/94/73(4)/610(1)\$06.00 © 1994 The American Physical Society