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Quantum Spherical Models for Dirty Phase Transitions
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We construct large n-(spherical) limits for a series of interesting quantum phase transitions in

disordered systems, including quantum ferromagnets and spin glasses, superconducting thin films

with and without an external magnetic field, the dirty boson problem, the fractional quantum Hall

effect, and Nelson s model of flux lines in high-temperature superconductors. The spherical limit

always produces a random matrix inversion problem with self-consistency conditions, which then must

be solved numerically. %e present preliminary results for the dirty boson problem in two spatial

dimensions.

PACS numbers: 05.30.—d, 67.40.—w, 73.40.Hm, 74.80.Bj

One of the few remaining analytic tools that has not

been applied to phase transitions in dirty quantum systems
is the large n-expansion. This technique has been applied,
with great success, to a large number of clean two-
dimensional quantum spin systems [1] and infinite range
quantum spin glass models [2, 3]. In what follows we
describe a series of models which are large n, or spheri-

cal limits, of particular classes of short range q-uantum

models with quenched disorder. Here n is the number

of order-parameter components, and the limit n ~ ~
is taken in the interest of obtaining a tractable model
which still contains much of the original physics. As
described below, an astonishing variety of interesting

problems may be attacked by this method: superfluidity

of He in porous media (the dirty boson problem), flux

phases in high-temperature superconductors (especially
the proposed vortex glass phase), universal transport
phenomena in superconducting films (both with and

without external magnetic fields), and quantum spin
glasses and antiferromagnets. It turns out that solving
these models requires the inversion of very large matrices
with near-diagonal disorder, along with the imposition of
a self-consistency constraint. Such inversions can be done
numerically, and the self-consistency condition imposed
via an iteration procedure The s.ize of the matrix grows as
a power of the system size, and standard finite-size scaling
techniques must be used to extract the critical behavior.
The limit n ~ ~ in certain problems is known to produce
pathologies, but we find that wherever general results are
known, indications are that the corresponding spherical
limit exhibits all the required properties, sometimes in

novel and surprising ways. In this Letter we construct
the large-n limits for all of these models and then present
preliminary data for the dirty boson problem.

(1) Classical spins The usu. —al reduced exchange
Hamiltonian for a lattice of classical spins, s;, is

&~i = P9f, i
= —

2 g; J K;J.si sJ, where P = 1/ktiT,

K;, = pJ;, is the matrix of (reduced) exchange inter-

actions, and the spins are n-component vectors whose

length we take to be ~s;~ = ~n. Of interest here is the

case when the interactions are short ranged and have a
random aspect.

In order to study the large-n behavior it is convenient to

write the partition function in the form Z = tr'[e ~] =
P; J d"s; b((s;~ —n) e "l'1. Using the representation

B(x) = J „(dA/2m)e'"" we may then factor the trace
over s into n independent traces over each compo-
nent of s, at the expense of introducing a new trace
over a one-component field A: Z = tr"[e "~l'"~]; tr" =—

[], J dA;/2m. . Here

+[iA] = i g A; + 2 ln det(t~/2n. );

s is any single component of s, and t~;, = 2i A; 8—;, —K;, .
For large n the method of steepest descents is appropriate,
and we seek the saddle point of +[iA]. With tr; = 2i li;, —
the saddle point is defined by 0 = 28+/Bo;= (s;. ) —1,
implying (tt ');; = 1 for each i [4]. If there are N spins,
this represents N equations for the N o.; (which clearly
will be real). For noninfinite n, corrections in powers
of 1/n may in principle be computed by considering
fluctuations of the A; about the saddle point values
io.;/2; however, in the random case even the n ~ limit

is not analytically tractable, and obtaining higher order
corrections is even more difficult. In this Letter we will

be concerned only with the spherical limit.
The free energy (1) is that of a constrained Gaussian

model. The phase transition, at inverse temperature

p = p„ takes place when the eigenstate associated with

the smallest eigenvalue, eo(p) = 0, of the matrix

first becomes extended. One may define various critical

exponents to describe the form of the critical low-energy

density of states, p(e; p, ) —eY, the divergence of the

localization length, $ —(p, —p) ", and so on. In the

ordered state, which occurs for p ) p„ the system
"condenses" into the eigenvector associated with this

vanlshlng clgcnvaluc. If J;~ ~ 0, thc ordc1 cd state 1s

ferromagnetic in character.
Although there are some interesting classical problems

that deserve future attention, the really interesting (and
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less computationally intensive) problems come from gen-
eralizing the formalism to quantum mechanical systems
atT =0.

(2) The random ro-d problem, or particle ho-le symmet
ric dirty bosons .—The first quantum mechanical model
we will consider is most simply defined by 9f,&

in which
the nearest neighbor couplings are random, but constant
along a particular direction, ~ ~ This model is equivalent to
those with columnar disorder discussed in [5]. To make
more direct contact with the physics of bosons we con-
sider instead a closely related version of this model de-
fined by the reduced Hamiltonian

P
dr KQ IB,pi I

—g J//t/I; ' p&, (2)
0 l,J

where P;(r) is an m-component complex vector (so that
n = 2m) with ~p;~ = m, 0 ~ r & p is a continuous
imaginary-time variable, and the index i runs over a d-
dimensional lattice.

The large-n limit is obtained using the same
representation for the delta function. This intro-
duces a new field A; (r), and at the saddle point
we will have A; (r) = i a;, independent of r, sat-
isfying 1 = P 'g„[a '(cu„)];;, where K;J (cd ) =
(Kcu2 + o;) 8;, —J;,, and cu„= 2m n/p are the Matsub-
ara frequencies. If we define the matrix Dj'= 0 '8 'j J'j,
and its spectrum, g, D;, P, = e P;, where a labels the
eigenstates, then the cu„sum may be performed exactly
[6] to yield

where, again, ~P;~ = m, p, ; = p, —w;, p being the
chemical potential, and w; the (random) external site

potential. The main effect of the p, ; is to introduce
linear time derivative terms, p;P;* . B,P;, which break
particle-hole symmetry, and make the action complex.
The coupling K = 1/2uo is inversely proportional to the

repulsive on-site potential, up, in the quantum boson
Hamiltonian.

The large-n limit is obtained precisely as before, but
now with matrix /~;, = [o.; —K(iar„—p, , ) ]8;, —J;,. If
the p, ; are random, the cu„sum cannot be performed
exactly: A different matrix must be diagonalized for
each cu„. A statisticalIy particle-hole symmetric model
results when p = 0, and the w; have an even probability
distribution, although models with p, = 0 and p, 4 0
are expected to lie in the same universality class [8].
Numerically, however, a much more convenient model
results when p, ;

—= p 4 0 is uniform. So long as J;,
remains random, this model too wi11 lie in the same
universality class. The advantage now is that, using the
same matrix D;, and its spectrum, the ~„sum may now
be performed exactly to yield

1=/ ' cath zP/s/K+@,
4ge K

+ cath[& P gs /Ic —p
1

1 = pip; I coth 2 pQe~/K /2QKe (for each i)
= Z Ig; I'/24«-, P — (T —0).

0 E' K p2&Ke P ~ co (T ~ 0)

(5)

x ill; + g J; P,.
* .

g/j/ (4)

(3)
The eigenvalues e (K; [rr;)) are the effective single parti-
cle energies (renormalized by the repulsive interactions),
and p are the corresponding eigenstates. As K increases
the e decrease, and the critical point, K = K„again oc-
curs when the localization length of the zero eigenvalue
diverges.

Very little is known about the random-rod model in
dimensions d ~ 2. Analytic results have been obtained
only from an extremely poorly behaved double-epsilon
expansion [5]. For d = 2 the model is relevant to
particle-hole symmetric Josephson junction array models,
and, more importantly, to certain types of disordered
two-dimensional quantum antiferromagnets [1] and spin
glasses [2].

(3) Dirty bosons The generaliz. —ation of (2) appropri-
ate to bosons is the complex action (closely related to a
functional integral representation of the second-quantized
boson Hamiltonian [7]),

P
Se = — dr Kg tel,.

* (8, —p, ;)
0

where O(x) = 1 for x ~ 0, vanishing otherwise, is the
step function. We now argue that, in fact, this model has
two phase transitions at T = 0. When EC is sufficiently
small, K & KM, all e lie above ~p, ~, and the T = 0
forms of (5) and (3) are identical: the thermodynamics is
completely independent of p, and the system is therefore
incompressible. This latter property defines the famous
Mott insulating phase [7] with fixed integer density
(which we take to be exactly zero). After e hits Kp, at
K = KM it sticks at that value, and as K increases further
the eigenvalues above it experience level repulsion. The
system is now in the Bose glass phase [7]. One can
show that this level repulsion leads to a positive density
of states, p(e), at e = Kp2, as predicted by the general
theory [7]. Although there is now a "condensate fraction"
in the state eo [and (5) must be modified appropriately],
which is proportional to the total density, superfluidity
does not occur until K = K, ~ KM where this state finally
produces long-range order. Below we present numerical
results for this model.

(4) Magnetic fteld tuned transitions in thin film super-
conductors. —An interesting generalization of the dirty
boson problem arises when one considers a dirty super-
conducting film in a perpendicular magnetic field B [9].
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Since the boson», in our picture, are charge 2e Cooper
pairs, they couple to the magnetic field via the usual

[p —(2e/c)A] generalization of the momentum. Here
A is the vector potential, with B = V X A assumed to
be uniform. %hen space is discretized, the hopping ma-
trix acquires a phase fac]or, J;j J;je' '"'j/', where Aj'
—Aji is the vector potential on the bond joining sites i and

j. The diagonalization procedure leading to Eq. (3) is now
alid, with D„=;6;,—J;j

Unlike the B == 0 problem, the spherical limit offers a
more or less unique method for studying the phase tran-
sition: The complex hopping matrix seems to give rise
to sign problems in Monte Carlo simulations just as in-

tractable as those for fermions. Other than purely phe-
nomenological information provided by various duality
arguments [9], nothing is known theoretically about the
transition.

(5) The fractional quantum Hall effect. The f—ractional
quantum Hall effect has a deep connection with super-
fluidity of particles with fractional statistics (anyons) in
a strong magnetic field [10]. Thus, via the usual singu-
lar gauge transformation, one may represent the anyons
as bosons with magnetic flux tubes attached. The bo-
son action then acquires a statistical gauge field, a —=

(ai&, a, , a,. ), whose dynamics is governed by the famous
Chem-Simons term in the action [10]. Generalizing the
derivation of (4) to this case, one obtains the same
form, but with 6, —p, ; 8, —p, ; —iao;, and J;j
J;,e"'-"l" "i'. For general m the appropriate Chern-
Simons term is then (im/40)e»a ilttar (appropriately
discretized), where 8 is the statistical parameter, and the
Greek indices run over both space and time. One may
now investigate the transition between the fractional quan-
tum Hall state and the insulating state. In the absence
of disorder, and p, ,

=—0, the quantum Hall-Mott insu-
lator transition was investigated in [11]. It was found
that, at order 1/m, universal quantities acquire a 6i de-
pendence, violating basic assumptions contained in earlier
work. An open question is whether the same is true in
the presence of disorder. Since we are able to treat only
the limit m ~, we cannot really address this question
for this model. However, a second generalization of the
model, in which there are m statistical gauge fields, one
for each component of tlI, was also considered in [11].
This model breaks the SU(m) symmetry, and so may not
have a proper I/m expansion, but it does have a well-
defined m ~ limit. This limit is soluble only pertur-
batively for small 0 (0 = 0 corresponding to the origi-
nal boson problem) and the Hall conductance was found
to have a leading linear dependence on 0 with a univer-
sal coefficient [11]. It is straightforward to write down
an expression for the coefficient of this linear term in the
presence of disorder as well. It is given by a multiple sum
over products of four dirty boson Green's functions, and
there is no apparent reason why it should vanish. %e are
in the process now of computing it numerically.

+ g w[r;(z), =] dz, (6)

where r;(z) is the position of the ith flux line as a
function of height, , which also defines the direction of
the magnetic field, H; v(r) is the effective interaction
between flux lines, and w(r, z) is the external (e.g. ,

random impurity) potential. The phenomenological tilt
modulus m tends to align the flux lines along the field,
and their number is set by the magnitude of H. If
periodic boundary conditions in .are imposed, or simply
if L ~ ~, 9EF is precisely the Feynman path integral
representation of the imaginary-time-dependent quantum
boson Hamiltonian,

Sf'(r) $ +
p g v(xi x~') + g w(xi r)Ip; I i

i=1 iWj i=1

where z is now identified with 7, and the width L
is identified with the inverse temperature P. The
usual second-quantized form then follows immediately,
as do all the standard functional integral representations
based on it. In particular, (4) still holds, but now with r
dependent site potentials p, ;(r) = p —w;(r), and p, ~ H.
The saddle point values tr;(r) are now r dependent, and
the full matrix ~;J(r, r') = ((o.;(r) —K[8, —w;(r) ]) X

6;, —J;,)6(r —r') (appropriately discretized) must be
inverted in order to impose the self-consistency condition,
(~ ');;(r, r) = l.

Perhaps the most interesting open question is whether
or not the model actually has a phase transition when L
~ (i.e., T 0 in the analogous boson problem). Thus,
whether there exist an insulating phase (which would
correspond to the superconducting vortex glass phase)
[13], intermediate between the Meissner and normal
phases, is not clear for d ~ 2. Although columnar
disorder is known to localize the boson world lines [14],
time-dependent disorder may serve actually to delocalize
them. In d = 1 there isa vortex

g,
lass phase [13],

but, contrary to superfluid phases, localized phases tend
to be less stable in higher dimensions [15]. If the
model does have a transition there are also a number of
interesting questions to be addressed. For example, are

(6) Flux phases in high te-mperature superconductors,
or bosons with time varying disorder. —This final ap-
plication is, numerically, the most difficult to address,
but perhaps the most physically interesting. In the fully
screened limit in which the flux lines are far apart (sepa-
ration much larger than the magnetic penetration depth A)
one may write down an effective Hamiltonian (rather dif-
ferent from those of the unscreened "gauge glass models"
studied by others) for N flux lines in a type-II supercon-
ductor [12]:

X

Rr;z + —, vr;z —r, z
i=1 iwj
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FIG. 1. Finite-size scaling analysis for the dirty boson prob-
lem. The inset shows the scaled correlation length for sys-
tem sizes L = 10, 12, 14 (steeper curves correspond to larger
system size). The crossover point determines the critical
coupling, K, = 0.0925 ~ 0.008 (the Mott transition occurs at
approximately K~ = 0.085). The main plot shows that the
choice z = 2 gives a consistent crossover point for the super-
fiuid density. Error bars are about the size of the symbols.

the correlations isotropic, v, = v? In all existing scaling
analyses of experimental data this equality is assumed.

We end by demonstrating our method on the two-
dimensional dirty boson problem. In Fig. 1 we show
data for the correlation length and superfluid density,
obtained by averaging over at least 150 realizations of
the disorder, for linear system sizes up to L = 14. Our
method has the advantage that we may set T = 0 from
the outset, allowing us to perform finite-size scaling only
in L. By standard arguments [16], the crossover point of
the g/L curves for different L represents the critical value
of K. We find EC, = 0.0925 ~ 0.008. The superfluid
density scales as L'p„and we may now determine
the dynamical exponent z by demanding that the scaled
superfluid density curves cross at the same critical value,
K, . We find a result, z = 2.0 ~ 0.1, consistent with the
prediction, z = 2 (used in the figure), of the general
theory [7]. Scaling also predicts that g/L and L'p,
are universal functions of the variable L'~"(K —K,),
where v is the correlation length exponent. We find v =
1.0 ~ 0.1, consistent with the predicted inequality p ~ 1

[17]. Using z = 2 we compute also one of the universal
conductances [18],o.' = (4e /h) lim„o p, (ru) /tu, where

p, (ru) is the frequency dependent superfluid density
[16]. We find o.* = 0.18, which should be compared
to the result o.* = 0.14 for m = 1 [16]. This is not the
universal conductance inferred experimentally [9], which
involves an extrapolation from finite temperature, but is
the easiest to compute. We will present experimentally
more relevant results in a future publication.

8.0

This research has been supported by the NSF through
Grant No. DMR-9308205. P. B.W. would like to thank
Subir Sachdev for numerous conversations and the
Institute for Theoretical Physics in Santa Barbara for
hospitality during the early stages of this work.

[1] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991);
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219
(1991); S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992).

[2] J. Miller and D. A. Huse, Phys. Rev. Lett. 70, 3147
(1993); S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339
(1993).

[3] J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011
(1993).

[4] A. J. Bray and M. A. Moore, J. Phys. C 15, L765 (1982).
This paper contains a derivation nearly identical to
the one above. We reproduced it only to motivate the
analysis of the quantum problems.

[5] S.N. Dorogovtsev, Phys. Lett. 76A, 169 (1980);
D. Boyanovsky and J.L. Cardy, Phys. Rev. B 26, 154
(1982); I. D. Lawrie and V. V. Prudnikov, J. Phys. C 17,
1655 (1984).

[6] We are indebted to Subir Sachdev for pointing out this
simplification.

[7] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Phys. Rev. B 40, 546 (1989).

[8] M. P. A. Fisher, Physica (Amstetdam) 177A, 553 (1991);
A. T. Dorsey and M. P. A. Fisher, Phys. Rev. Lett. 68, 694
(1992).

[9] A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65,
927 (1990); M. A. Paalanen, A. F. Hebard, and R. R. Ruel,
Phys. Rev. Lett. 69, 1604 (1992); M. P. A. Fisher, Phys.
Rev. Lett. 65, 923 (1990).

[10] S.C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev.
Lett. 62, 82 (1989).

[11] X.-G. Wen and Y.-S. Wu, Phys. Rev. Lett. 70, 1501
(1993).

[12] D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D. R.
Nelson and H. S. Seung, Phys. Rev. B 39, 9153 (1989).

[13] M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989); D. S.
Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43,
130 (1991).

[14] See D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68,
2398 (1992).

[15] David A. Huse (private communication).
[16) E.S. Sgtrensen, M. Wallin, S.M. Girvin, and A. P. Young,

Phys. Rev. Lett. 69, 828 (1992).
[17] J.T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,

Phys. Rev. Lett. 57, 2999 (1986).
[18] M. P. A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev.

Lett. 64, 587 (1990); K. Kim and P. B. Weichman, Phys.
Rev. B 43, 13 583 (1991).


