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Microscopic Theory for Conductance Oscillations of
Electron Tunneling through a Quantum Dot
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A microscopic theory for conductance oscillations of electron tunneling through a quantum dot
occupied by electrons with a strong Coulomb interaction is proposed. It is found that the conductance
oscillations are approximately periodic only for a large number of electrons (~30). A "shell" structure
in the oscillations for a small number of electrons is predicted. In addition, a pair structure reflected
by even- and odd-occupation numbers is revealed in peak heights and linewidths as well as separations
between adjacent peaks of the oscillations. Peak height and linewidth increase with increasing chemical
potential. These predictions are in agreement with experimental measurements.

PACS numbers: 73.40.Gk, 73.20.Dx

Nanoscale quantum dots exhibit striking quantum phe-
nomena [1—4]. The experimentally observed periodic
conductance oscillations at low temperatures is one such
phenomenon [5,6]. By virtue of an innovative device,
Meirav, Kastner, and Wind were able to conclude that
each cycle in the conductance oscillations corresponds
to the addition of one electron to the dot, constituting
a quantized charging process [7]. One interpretation of
the conductance oscillations has been in terms of a clas-
sical Coulomb blockade theory (CBT) [8,9]. Alterna-
tively, treating the dot as a single site, an interplay of the
conductance oscillations and quantized energy spectrum
can be qualitatively explained within the Wolff-Anderson
model (WAM) for a single impurity as proposed by Meir,
Wingreen, and Lee [10]. Based on the WAM, these
authors discussed the temperature dependence of peak
heights of the oscillations and the transport behavior in
the Kondo regime [10,11]. More recently, an experimen-
tal investigation of channel competition for single electron
tunneling through a dot has been reported [12] and an ex-
act Breit-Wigner formula for 1D multibarrier resonance
tunneling has been derived [13].

The Coulomb interaction in a quantum dot is very
strong and thus plays a central role in the quantum trans-
port process, as indicated in the WAM [10]. But that
model can only qualitatively describe an energy spectrum
for 2 electrons in the dot. Experimentally, the conduc-
tance oscillations were measured in a range of electron
occupations 30—60 [14]. Similarly, the classical CBT it-
self cannot give any information related to the energy
spectrum of the dot. Thus, it is difficult for either model
to describe detailed structure of the oscillations. Again,
only for a few electrons in the dot can an exact energy
spectrum be numerically obtained by exact diagonaliza-
tion [15,16]. This is far below the range in which the
experiment was performed [14]. It is the purpose of this
Letter to show for the first time how the strong Coulomb
interaction (including both direct and exchange interac-
tions), and hence the energy spectrum and the occupation
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The three terms in Eq. (1) are associated with the leads,
the dot, and the hopping process between the leads
and dot, respectively. An electron state in the
leads (dot) is labeled by k (u) with a spin index o..
T + U = p2/2m* + m'coop /2 (m* = 0.067m„m, is
an electron bare mass) is a one-body Hamiltonian

number of electrons, microscopically affect the period and
structure of the conductance oscillations.

We propose a microscopic resonant tunneling mecha-
nism to interpret the conductance oscillations based on
a Hartree-Fock (HF) calculation [17]. Our key findings
are the following: (1) the conductance oscillations are
aperiodic (approximating a "shell" structure) for a small
number of electrons in the dot, and gradually become ap-
proximately periodic for large numbers (~ 30); (2) there is
a pair structure (a reflection of even- and odd-occupation
number) in peak heights and linewidths of the oscillations;
and (3) the peak height and the linewidth tend to increase
with increasing chemical potential, which is the energy
carried by the tunneling electrons.

The quantum dot is considered as a two dimensional
system in the x-y plane. We choose a parabolic con-
fining potential, and take a typical value 2 meV for fLcdo

throughout this paper. We assume two perfect leads con-
necting to the dot on both sides. The total Hamiltonian of
the system is given by

H = H) + Hd + Hg,

where
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which contains the confining potential. The cor-
responding single electron eigenfunctions are

P„~ = pl~lexp( —im61)Ln (p2/2a2)exp( —p2/4a2) [18],
where a = (fi, /2m'ruo), and m and n are an az-
imuthal angular momentum and a principle quan-

tup number, respectively. The eigenvalues are
«nm, = (2n + ]m( + 1)hcoo [18] with n = 0, 1, 2, . . .()
and m = 0, ~1, ~2, . . . . V is the barrier between the
leads and dot and is denoted by a sum of U and the
Hartree potential VH of the dot. We calculate the
quasiparticle (QP) energy spectrum by solving the zero
temperature HF equation [19]
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where e( ) is a diagonal matrix element of the one-body
Hamiltonian. Equation (6) is solved self-consistently.

where
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Here, u is a label identifying the QP state (m, v) (v
is the principle quantum number, but is different from
n). & '"" = (e /~) [ x; —x, ~

with a dielectric constant
~ = 13 for the host semiconductor. gp

= 2 (1) corre-

sponds to 2 (1) electrons in state P. «F is the Fermi(N)

energy for N electrons in the dot. Equation (3) is diago-
nal in m. The Coulomb interaction makes the QP wave
function completely different from that of the single elec-
tron. One way to obtain a QP wave function is to rewrite
the Fock term as an equivalent local potential with a QP
wave function in its denominator, and then to solve the re-

sulting differential equation. Another approach is to map
the HF equation into a matrix form in terms of a com-

plete basis, the QP energy levels and wave functions can
be found by diagonalization of the matrix in a truncated

space. We adopt the second one, which is well estab-
lished in atomic and nuclear physics [20].

We expand P by {P„,n = 0, 1, 2, . . .) with a fixed

value of m as
= $c„@„

n

Here, each value of m corresponds to a matrix equation

We fill electrons starting from the lowest energy empty
states (v, m)'s. According to our convergence test, five

terms in the expansion of Eq. (5) give satisfactory results
for up to 40 electrons in the dot.

We have compared our HF ground state energies with

those calculated by using an exact diagonalization method
for a few electrons [15]. For the case of four electrons
in the dot, our total binding energy is about 5% higher.
However, the HF result is expected to rapidly improve
with increasing occupation number. It is worth pointing
out that the Fock term contributes to the energy spectrum
as much as 20 k, so it is very important.

Following the treatment in Ref. [10], we use a gen-
eralized Landauer-type formula [21] to calculate the

conductance:

o. = —g d« f„'o («) Im[G„(«)] . (7)
e'- ", I («)
h

where fFo is the Fermi-Dirac distribution function, I is

an elastic coupling between the leads (the two leads are
assumed to be symmetric) and dot, and in the Born ap-

proximation I (cu) = 2m gz ~VI,
~

&(~ —«k). Im[G ]
is given by

Im[G («)] = X (»Im

(« —«H")' + (Imago)'

where ImX = I /2 + ImX"'). (ImX" is also attributed
to both the Coulomb interaction and I .) At the zero
temperature, fFD(«) = —6(« —p, ) (p, is the chemi-
cal potential of the lead). Suppose that a dot is occu-
pied by N electrons and an incoming electron tunnels

through the barrier and enters the dot. There are many
states for this electron to mediate. Since Im[G (p, )]
has a Lorentzian form with a narrow width, it decays
rapidly with increasing deviation of the mediating

energy e"" from p, . Our calculation of the self-energy
of electron-electron correlations shows that ImX is at

least 2 orders smaller than the energy gaps of quasi-
particle energy spectra. Thus there exists a dominant

resonant state which is the highest occupied state of
the N + 1 electron system and has a contribution to
the conductance at least 4 orders larger than any other

energy level. This result immediately leads to a well

approximated Breit-Wigner type conductance. As shown

below, the degeneracy of this state will be "physically"
invisible because the addition of an electron to the dot

changes the entire energy spectrum completely due to
the strong Coulomb interaction. This is contrary to the

single electron case in which a peak can be contributed

to by multielectrons.
According to the experimental conditions [7], the

chemical potential on both sides of the dot can be thought

of as being controlled by varying a gate voltage applied to
the substrate. The bias between the left and right leads is

very small and is neglected here. Suppose that there are
N electrons in the dot. As the chemical potential is raised

above an experimental threshoM, it is initially lower than
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FIG. 1. The Fermi energies calculated in the HF approxima-
tion corresponding to the ranges of occupations (a) 1 —10 and
(b) 31—40 electrons, respectively.

(N+ 1)
the resonant energy level eF, and the Breit-Wigner
type conductance will have a peak only when p, coincides

(N+ 1)
with eF . Upon raising the chemical potential p, fur-

(N+ 1$ (N+2)
ther, such that p, —(eF + eF )/2, one electron will

be trapped in the dot to form a N + 1 electron system.
The next electron tunneling into the dot will interact
with the N + 1 electrons self-consistently and mediate

(N+2)
through a new resonant energy level eF . Continuing
this sequence, the conductance shows oscillations with
Lorentzian line shapes, and each peak in the oscillations
corresponds to the addition of one electron to the dot, as
confirmed by experiments [7,14].

It is clear that the difference between neighboring reso-
(N) (N+ 1)

nantenergies eF and eF determines the separationbe-
tween two adjacent peaks (corresponding to N and N + 1

electrons in the dot, respectively) in the oscillations. The
QP Fermi energies for 1 —10 and 31—40 electrons are
shown in columns (a) and (b) of Fig. 1, respectively.
There are two striking features in Fig. 1: a "shell" struc-
ture in the spectrum for the range 1 —10, and a spectrum of
approximately equally separated energy levels in the oc-
cupation range 31—40. The shell structure is attributed
to the following residue effect from the degeneracy of the
single electron energy level: Suppose that the first reso-

nant energy level eF is empty. An (first) electron enters
the dot and occupies this level. The next (second) incom-
ing electron also occupies this level, but the level has been
pushed up to eF by the Coulomb repulsion. The third

(2)

electron has to occupy the next higher level eF . Since(3)

the first and second electrons occupy the same level, the
Coulomb repulsion is stronger than that betweeI] the third
electron and the rest. Thus the gap between eF and E'F

( ) (2)

is smaller than that between eF and eF . In column (a)
(2) (1)

of Fig. 1, the first two levels belong to the lowest shell
(v = m = 0), the next four to (v = 0, m = ~1), the 7th
and 8th levels to (v = l, m = 0), and the last two levels to
(v = O, m = 2). Althoughthe HFresultforsmallnumbers

of electrons is not as reliable as that for large numbers, the
variation among the gaps in Fig. 1(a) is so large that the

shell structure will qualitatively remain in the exact spec-
tra. As the occupation number of electrons increases, the
Coulomb interaction is increasingly dominant, and QP en-

ergy levels are more and more in balance self-consistently
so that the gap in the resonant energy spectrum decreases
and the degeneracy of the single electron energy level is
smeared out. The latter effect leads to the observation that
the oscillations in the conductance gradually become peri-
odic when a sufficient number of electrons (~ 30 in our cal-
culation) are accumulated in the dot. It should be pointed
out that the oscillations are not perfectly periodic. There
is about a 10% difference in the periods for the occupation
range 31—40, which is the reflection of a 10% difference
among the energy gaps in column (b) of Fig. 1, and in co-
incidence with experiment [7].

To calculate the conductance at zero temperature, we
approximate the elastic coupling using the WKB method.

ImXn is calculated by considering the diagonal com-
ponents of the next order Feynman diagrams beyond
those of Hartree-Fock in which the imaginary self-energy
due to the elastic coupling, —il'/2, is added in the QP
Green's function denominator. A cutoff 0.084 eV is cho-
sen for the total confining potential 0.8V + U, where
a factor 0.8 is introduced to account for the reduction
from the nonlocal exchange interaction that contributes
about 20% on the average. We choose to plot in Fig. 2
ten oscillations of the conductance in the occupation
number range 31—40, since this is a region in which
the experiments were conducted [7,14]. Several features
should be noticed: (1) A pair structure appears in the
peak heights. This behavior reflects the even- and odd-
occupation numbers and the double degeneracy of two
spin freedoms. Consider, for example, the second and
third peaks in Fig. 2, which correspond to the occupa-
tion numbers 32 and 33, respectively. There is only one
conduction channel for the 32nd electron, but two chan-
nels for the 33rd electron because of the spin degree
of free m [22]. Besides a factor of 2, the Fermi en-
ergy eF is closer to the cutoff edge of the total confin-
ing potential and the elastic coupling I becomes larger
so that the third peak is pushed up even higher. This
explanation of the alternation in peak heights can be
generalized to nonzero magnetic field cases, as can be
seen by noticing that there is also a double degeneracy

1 1of states (m + 2 and m + 1 —2) in the presence of
a magnetic field. Since a strong field produces an edge
state near the boundary of the dot which prevents elec-
trons from approaching, we can argue that the mag-
netic field "quenches" the disorder near the boundary
and makes the alternation structure more regular and ex-
plicit in experiments. (2) A pair structure occurs in the
linewidths. This can be clearly seen in the last five lines
of Fig. 2 corresponding to the occupation numbers 36—40.
An even-occupation number gives a configuration of total
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FIG. 2. Ten conductance oscillations as a function of chemi-
cal potential corresponding to the electron occupation range
31-40.

spin S = 0 such that every state has two electrons and
their wave functions completely overlap. The Coulomb
interaction makes the energy level separation close to the
Fermi surface bigger than that for an odd-occupation num-

ber. This is similar to a closed shell atom or nucleus.
Thus, the resonant state for the occupation numbers 36
[38] has a narrower linewidth, a longer lifetime, and more
stability compared with that for 37 [39]. (3) The peak
height and the linewidth increase with the chemical po-
tential p, . This result can be understood by noting that
the transmission probability continuously increases as the
chemical potential approaches the cutoff edge of the total
confining potential.

In conclusion, we have proposed a microscopic reso-
nant tunneling theory based on the HF QP energy
spectra to quantitatively interpret the observed striking
conductance oscillations. The strong Coulomb interaction
between electrons in a quantum dot is very important
and essential for explaining the quantized electron
charging process. The exchange interaction (Fock term)
contributes as much as 20% to the QP energies, and

cannot be neglected. We predict that the oscillations
are not periodic for a small number of electrons in the

quantum dot, but will be approximately periodic for a
large occupation number. A pair structure (even- and

odd-occupation numbers) is found in the peak heights and

the linewidths as well as separations between adjacent
conductance peaks. A tendency that the peak height and
the linewidth increase with increasing chemical potential
is revealed. The experimental observations [7,14] are in

excellent agreement with our theoretical predictions.
We would like to acknowledge useful discussions with

S. Trugman, K. Likharev, and K.B. Efetov, and to thank

S. Feng for his fruitful suggestions. Work at Los Alamos
is performed under the auspices of the U.S. DOE.

Note added. —More recently, we heard that our
three findings concerning the effect of even- and
odd-occupation number have been observed in experi-
ments in the absence of a magnetic field. by R. Westervelt
and colleagues (private communication).
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