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Experimental Realization of Any Discrete Unitary Operator
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An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in
the laboratory using optical devices is given. Our recursive algorithm factorizes any X x N unitary
matrix into a sequence of two-dimensional beam splitter transformations. The experiment is built
from the corresponding devices. This also permits the measurement of the observable corresponding
to any discrete Hermitian matrix. Thus optical experiments with any type of radiation (photons,
atoms, etc.) exploring higher-dimensional discrete quantum systems become feasible.

PACS numbers: 42.50.Wm, 03.65.Bz, 42.79.Sz, 42.79.Ta

While it is evident that any lossless experimental setup
can be described by a unitary operator, the inverse prob-
lem, i.e. , the question as to whether an experimental
setup exists for any given unitary operator, has been a
hitherto unsettled question. In the present I etter, we
present a surprisingly simple but general algorithm for
the design of an experimental realization of any N x N
unitary matrix in the laboratory. This, to our knowledge,
is the first constructive proof that any discrete unitary
operator can be given operational meaning in the real
world.

Our experimental realization transforms the N input
states into the N output states using an arrangement of
beam splitters, phase shifters, and mirrors. It should be
mentioned that it does not matter what kind of field such
an optical multiport is acting upon. %e choose photons
here for convenience of discussion and because of the fact
that high power sources, even for entangled radiation, are
available today. Yet we note that it would be equally pos-
sible to realize multiports for electrons, neutrons, atoms,
or any other type of radiation.

Before going into the details of our proof, we mention
that our observation makes a wealth of new experiments
possible. Such multistate devices will be used in future
quantum computation and quantum information process-
ing schemes. N-state systems of two and more particles
permit the study of novel Einstein-Podolsky-Rosen cor-
relations in higher dimensions [1], which will find prac-
tical applications in quantum cryptography using more
than two states [2] and in quantum "teleportation" [3].
Going beyond the simple U(2) interferometer allows the
construction of optical experiments equivalent to gener-
alized Stern-Gerlach experiments [4] that can be used to
study nontrivial properties of spin-one systems [5] and of
higher-dimensional spin systems. A multiport can also be
used to simulate general spin systems in Bell inequality
experiments [6].

Experiments with entangled photons in multidimen-
sional Hilbert spaces have become possible using multi-

port beam splitters [7]. Such higher-dimensional discrete
quantum systems show effects which are not observable
in simple two-dimensional systems and which are of qual-
itatively completely different nature as has been shown
by Gleason, Bell, Kochen, and Specker [8]. Finally, mul-

tiports will generalize the apparatus of the fine exper-
iment by Noh, Fougeres, and Mandel [9] to higher di-
mensions. Thus multiports open the definition and ex-
ploration of generalized multimode intensities (including
quadratures, Q functions, and P functions) [10,11] and
phases to experimental investigation.

Independent of and important beyond all practical ap-
plications, our observation addresses an old fundamental
question in the theory of measurement [12]. This is the
question of whether or not an experiment measuring the
variable corresponding to any arbitrary Hermitian oper-
ator exists. We answer that an analog embodiment using
particle beams (photons, neutrons, atoms, etc. ) does ex-
ist for every Hermitian operator in a finite-dimensional
Hilbert space.

The experimental realization of the most general el-

ement of U(2) is well known [13,14]. The matrix of a
lossless beam splitter with a phase shifter at one output
port will be used in our proof. It transforms the in-

put state with modes (kt, k2) into the output state with
mode~ (kl k2)

(1)
& kt & e'~sinn e'~cosa l kt

( k2 ) cos& —slncd ) k2

The parameter a describes the reflectivity (v B = sinn)
and transmittance (v T = cosa) of the beam splitter.
The parameter P can be realized as an external phase
shifter after the beam splitter. Phases at the input
ports can be chosen so that the beam splitter matrix
performs any transformation in U(2) [15,16]. A hearn

splitter with variable reHectivity can be substituted by
a Mach-Zehnder interferometer using symmetric 50:50
beam splitters (see Fig. 1).

We now come to our constructive proof. The most
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(or column) of U(N), in an N-dimensional vector space.
These transformations are therefore the experimental re-
alization of a generalized rotation in N dimensions:

R(N) = Tg, N 1. TN, 1.

FIG. 1. A Mach-Zehnder interferometer can be used in-
stead of a variable reflectivity beam splitter as the basic
building block of any N x N unitary matrix. On the left
is one experimental realization of the device using two 50:50
beam splitters, two mirrors, and two phase shifters. The
Mach-Zehnder interferometer can be represented by the ab-
stract four-port device on the right. Two parameters (P, cu)

of the transformation T are set in the device.

important observation is that one can set up an experi-
ment equivalent to any U(N) matrix by using these beam
splitter devices such that successive U(2) transformations
are performed on two-dimensional subspaces of the full
N-dimensional Hilbert space.

The product of matrices is equivalent to setting up
experimental devices in sequence. Finding an optical
experiment belonging to an arbitrary unitary matrix is
therefore completely equivalent to factorizing the uni-

tary matrix into a product of block matrices containing
only beam splitter matrices with appropriate phase shifts
as defined in Eq. (1). We define a matrix T„qwhich
is an N-dimensional identity matrix with the elements

I&z, Izq, Iq&, and Iqq replaced by the corresponding beam
splitter matrix elements. This matrix performs a unitary
transformation on a two-dimensional subspace of the N
dimensional Hilbert space leaving an (N —2)-dimensional
subspace unchanged [17]. It can be used to successively
make all off-diagonal elements of the given N x N unitary
matrix zero, a method similar to Gaussian elimination.

The unitary matrix U(N) is multiplied from the right
with a succession of two-dimensional unitary matrices
TNq(uNq, pNq) for q = N —1, . . . , 1. The experiment
is built up by successively attaching the corresponding
beam splitter devices to ports N and q. Once all el-
ements of the last row except the one on the diagonal
are zero, this row will not be affected by later transfor-
mations. Since all transformations are unitary, the last
column will then also contain only zeros except on the
diagonal:

U(N) TNN 1 ~ TNN 2 . TN1= U(N —1) 0

0 can )
(2)

The effective dimension of the matrix U is thus reduced
to N —1.

This sequence of transformations can also be viewed
as the rotation of an N-dimensional vector, the last row

(0l'
0
0

R(N)

0

+e ~~ Cosh)y
—e '4" cosuqsinuq

+e '& cosu3sinu2sinu)q

coscJN y. . . sin ~q
~N 1 ~N 2''' ~1 ~

(5)

The parameters ur, and P, define general spherical co-
ordinates in N dimensions. These general coordinates
can thus be implemented in an optical experiment using
phase shifters and beam splitters.

The sequence of beam splitter transformations or ro-
tations can be applied recursively to the matrix with re-
duced dimensions. We note that a beam splitter is not
necessary if an element already happens to be zero. After
the final beam splitter transformation one obtains a di-
agonal matrix with elements of modulus 1. By attaching
appropriate phase shifters, i.e., multiplying with a diag-
onal matrix D with elements of modulus 1, we can make
the resulting matrix equal to the identity,

U(N) ' ~N, N 1' ~N, N 2' ' T—2 1 D =—I(N). (6)

The experimental setup thus built of beam splitters and
phase shifters is equivalent to the inverse of the original
N x N unitary matrix. The experiment operated in re-
verse, i.e. , taking the output ports as inputs and reversing
time corresponds to the transposed complex conjugate of
the inverse matrix and is therefore equivalent to the orig-
inal unitary matrix:

U(N) = (TN N 1 TN, N 2 T2,1.D) . (7)

This can be easily confirmed by multiplying the calcu-
lated beam splitter and phase shift matrices. The exper-
imental setup for a general 3 x 3 unitary matrix is shown
in Fig. 2.

Here we notice that our alternative interpretation
[Eq. (3)] shows how successive "rotation" matrices with

This provides an alternative view of our algorithm.
The most general unitary matrix U(N) can be written
as a "stack" of N orthonormal row vectors in an N-
dimensional Hilbert space:

((i )
(2

U(N) =

( (NI j
The matrix R(N) "rotates" a unit row vector in N di-
mensions into a general N-dimensional row vector.
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FIG. 2. Three beam splitter devices T„qand three addi-
tional phase shifters n; are enough to build any 3 x 3 unitary
matrix. Notice that because of operation in reverse the in-
dividual device's phase shifts P„qare now at the input ports
and the final phase shifters n, at the output ports.

N-1

N-2

2

reduced dimensions R(N —1),R(N —2), . . . , R(2) can be
used to create the most general set of N mutually or-

thogonal vectors in N-dimensional space. The practical
implementation of this method involves a triangular ar-
ray of beam splitters, each diagonal row in the triangle
reducing the effective dimension of the Hilbert space by
one (see Fig. 3).

Since our algorithm is recursive, the factorization of a
unitary matrix into beam splitter and phase shift ma-
trices is valid for any finite dimension. For example,
six beam splitters with appropriate phase shifts provide
an experiment equivalent to an arbitrary 4 x 4 unitary
matrix. The maximum number of beam splitter devices
needed to build a general N-dimensional unitary matrix
is ( 2 ) = l

2
l . This number grows only quadratically

with N, giving realistic hope that optical experiments in
higher-dimensional Hilbert spaces using multiport beam
splitters will be possible in the near future (We su. ggest
that the optical realization of continuous unitary opera-
tors might be achieved by suitable holographic or Fourier-
transform optical arrangements. ) In fact, our method not
only provides an experiment for any matrix in U(N), but
also an experimental setup which parametrizes the whole
N-dimensional unitary group.

Once all matrices of U(N) can be implemented, it be-
comes possible to measure the analog of the observable
corresponding to any discrete Hermitian matrix H. Note
that such a measurement requires, in general, N detec-
tors, one for each of the N orthogonal normalized eigen-
states, which correspond to the N unit eigenvectors of
the matrix H. We denote the eigenvectors as ~1), . . . , ~N)
and the corresponding eigenvalues with (hi, hz, . . . , b'av ),
a set of N real numbers. They do not have to be differ-

ent; the case of degenerate eigenvalues can be treated in

the same way.
The measurement apparatus makes the first detector

fire if the input state is ~l), the second if it is ~2), etc. In
addition the amplitudes for a general input vector ~@),
whose entries represent the amplitude for a photon to
arrive at the respective input port are (lip) to be de-

tected by the first detector, (2i Q) for the second, and

(i~@) for the ith. If the ith detector fires, the measured
value of H equals h, . The unitary matrix U involved in

such a measurement must "sort" the incoming amplitude
into N output ports corresponding to the N eigenstates

~1), . . . , ~N). (U is sometimes called the premeasurement

N'

operator. ) The measurement apparatus corresponding
to the Hermitian matrix H consists of the experimental
embodiment of U and a set of N detectors.

The unitary matrix belonging to H is constructed from
the eigenvectors of H by stacking their dual row vectors

(1~, . . . , (N
~

in numerical order. This matrix has the same
form as U(N) in Eq. (4). The experiment corresponding
to this matrix is constructed using the algorithm pre-
sented above.

As an example we choose one matrix from Mermin's

version of the Bell-Kochen-Specker theorem. One of the
Hermitian operators to be measured is cr„8o, with the
matrix representation

(oo o
0 0 —i 0
0 i 0 0

(~o 0 DJ
The corresponding unitary operator is composed of the
stacked bra eigenvectors of H:

(«i =-ll
(h2 = -1[
(hs =+1

q (h4 =+1~ P

(-i O 0 I)
1 0 —i 1 0

i 0 0 1

0 i 10)
The experimental realization of this matrix can easily be
calculated using our algorithm:

743
T42

T31
Phases

Note
exchange beams 3 and 4

~/4 x/2 1:1 beam splitter
vr/4 x/2 1:1 beam splitter
Ay = 0,'2 = 0 A3 = O.'4 = 'Tt

The zeros in the matrix reduce the number of beam split-
ters necessary in the corresponding experiment: transfor-

FIG. 3. A triangular array of beam splitters implements
any X x X unitary matrix as an optical multiport. The beams
are solid lines. A suitable beam splitter is at each crossing
point of the beams, Phase shifters are at one input of each
beam splitter and at the outputs (1', . . . , N') of the multiport.
Each diagonal row of beam splitters performs a transforma-
tion reducing the effective dimension of the Hilbert space by
one.

60



YOLUME 73, NUMBER 1 PH YSICAL REYI EW LETTERS 4 JULY 1994

mations T4q, T32, and T2q can be skipped. The proba-
bility measuring the value h, is given by [(h, [Q)] and is
exactly equal to detecting the photon in the output port
i. Thus all the 4 x 4 unitary matrices corresponding to
the Hermitian matrices used in Mermin's version of the
Bell-Kochen-Specker theorem can be realized in simple
quantum optical experiments.

Current work in Innsbruck Laboratory aims at building
beam splitter analogs of both Kochen-Specker type ex-
periments and experiments studying Einstein-Podolsky-
Rosen correlations in higher-dimensional Hilbert spaces.
Finally, we should mention another possibly important
application in atom lithography, where our results im-

ply that it is possible to realize experimentally any dis-
crete unitary operator acting on an atomic beam. In such
an experiment, the equivalent of beam splitters could be
suitably arranged laser fields [18]. It follows from the
generality of our results that such laser fields can be de-
scribed using the same formalism as presented above for
the photonic beam splitter.
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ported by the Fond zur Forderung der WissenschaRlichen
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No. S06502, and by the U.S. NSF Grant No. PHY 92-
13964.

[1] A. Zeilinger, M. Zukowski, M. A. Horne, H. J. Bern-
stein, and D. M. Greenberger, in Fundamental Aspects
of Quantum Theory, edited by J. Anandan (World Sci-
entific, Singapore, 1993).

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3 C. H. Bennett, G; Brassard, C. Crepeau, R. Jozsa, A.

Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993).

[4] A. R. Swift and R. Wright, J. Math. Phys. 21, 77 (1980).

[5] B. O. Hultgren III and A. Shimony, J. Math. Phys. 18,
381 (1977); C. Ulrich, Diplomathesis, Technical Univer-
sity Vienna, 1993 (unpublished).

[6] A. Garg and N. Mermin, Phys. Rev. Lett. 49, 901 (1982);
49, 1294 (1982); N. Gisin and A. Peres, Phys. Lett. A
162, 15 (1992); A. Peres, Phys. Rev. A 46, 4413 (1992).

[7] A. Zeilinger, H. J. Bernstein, D. M. Greenberger, M. A.
Horne, and M. Zukowski, in Quantum Control and Mea-
surement, edited by H. Ezawa and Y. Murayama (North-
Holland, Amsterdam, 1993), pp. 9—22.

[8] A. M. Gleason, J. Math. Mech. 6, 885 (1957); J. S.
Bell, Rev. Mod. Phys. 38, 447 (1966); S. Kochen and
E. Specker, J. Math. Mech. 17, 59 (1967); A. Peres, J.
Phys. A. 24, L175 (1991); N. D. Mermin, Rev. Mod.
Phys. 65, 803 (1993).

[9] J. W. Noh, A. Fougeres, and L. Mandel, Phys. Rev. Lett.
67, 1426 (1991);Phys. Rev. A 45, 424 (1992); 46, 2840
(1992).

[10] U. Leonhardt and H. Paul, Phys. Rev. A 47, R2460
(1993); J. Mod. Opt. 40, 1745 (1993); G. S. Agarwal,
Opt. Commun. 100, 479 (1993).

[11 N. G. Walker, J. Mod. Opt. 34, 15 (1987).
[12 E. P. Wigner, Z. Phys. 133, 101 (1952); E. P. Wigner,

Am. J. Phys. 31, 6 (1963);W. E. Lamb, Jr. , Phys. Today
22, No. 4, 23 (1969).

[13] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A
33, 4033 (1986).

[14] A. Zeilinger, Am. J.Phys. 49, 882 (1981);Z. Y. Ou, C. K.
Hong, and L. Mandel, Opt. Commun. 63, 118 (1987);
S. Prasad, M. O. Scully, and W. Marthiessen, Opt. Com-
mun. 62, 139 (1987); H. Fearn and R. London, J. Opt.
Soc. Am. B 6, 917 (1989);R. A. Campos, B.E. A. Saleh,
and M. C. Teich, Phys. Rev. A 42, 4127 (1990).

[15] S. Danakas and P. K. Aravind, Phys. Rev. A 45, 1973
(1992).

16 H. J. Bernstein, J. Math. Phys. 15, 1677 (1974).
[17 F. D. Murnaghan, The Orthogonal and Symplectic

Groups (Institute for Advanced Studies, Dublin, 1958).
[18] P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E.

Pritchard, Phys. Rev. Lett. 60, 515 (1988); J. J. Mc-
Clelland, R. E. Scholten, E. C. Palm, and R. J. Celotta,
Science 262, 877 (1993).

61






