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Multimode Rayleigh-Taylor Experiments on Nova
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Multimode Rayleigh-Taylor experiments have been conducted with planar CH(Br) foils accelerated

by x-ray ablation. The perturbations consisted of the superposition of either two or eight sinusoids. In

the linear regime the modes grow independently, but become coupled in the nonlinear regime, leading

to the appearance of k; ~ k, "beat" modes. This results in a redistribution of the perturbation into a

broader Fourier spectrum causing a change of shape: bubbles become broader and spikes narrower. The
overall size of the perturbation is not significantly altered.

PACS numbers: 52.35.Py, 47.40.—x, 52.65.+z, 52.70.La

The Rayleigh-Taylor (RT) instability has been the focus
of hydrodynamics research in inertial confinement fusion

(ICF) for some time [1—16]. In ICF, the drive (laser light,
x rays, or ion beams) heats the outer layer of the capsule
wall, causing it to ionize and rapidly expand. In reaction,
strong shocks are launched through the cold dense mate-
rial ahead of the ablation front (the "pusher"), after which
the pusher accelerates radially inwards, compressing ("im-
ploding") the D,T nuclear fuel contained inside. During
the shock transit phase, perturbations at the surface or at
any interface will grow due to the Richtmyer-Meshkov
instability [17,18], the impulsive analog of the RT insta-
bility. During the acceleration phase, a low density ab-
lated plasma is accelerating the high density pusher, and
the ablation front is RT unstable. Outer surface imper-
fections will grow further and eventually perturb the inner
surface, which in turn becomes RT unstable during the
deceleration phase of the implosion. Pusher material can
mix into the fuel degrading performance [1—3,19].

The linear regime of the RT instability is defined by
zl/A « 1, where g and A represent the perturbation am-

plitude and wavelength. In the linear regime, single-
mode perturbations grow exponentially, g = goe~'. The
growth rate y is given by y = (ctkg) / —Pkv„where
ct = (1 + kL) and v, = m/p, „.Here k = 2m. /A is
the perturbation wave number, L = p/ '7 p is the density
gradient scale length, g is the acceleration, m is the mass
ablation rate per unit area, p, „

is the foil maximum den-
sity, and P = 2—3 is a multiplier on the ablative term
[4,5]. After sufficient growth, zi/A ~ 0.1, the perturba-
tion enters the nonlinear regime, and its shape changes
from sinusoidal to "bubble and spike" [3]. The growth
slows and in the asymptotic limit the bubble amplitude
can be written as zi = f

veldt,

where vb = 0.3ggk repre-
sents the terminal bubble velocity [20]. Capsule surface
finishes are not single mode, however, but multimode in
nature. When more than one mode is present, the modes
grow independently in the linear regime but become
coupled in the nonlinear regime, leading to the appear-
ance of "beat" modes, k; k, . This causes a redistribu-
tion of the perturbation to longer and shorter wavelengths,
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FIG. 1. The experimental configuration consists of a Au
cylindrical hohlraum with a modulated CH(Br) foil mounted
on the wall. The laser beams convert to x rays in the hohlraum
which ablatively accelerate the foil. An additional laser beam
generates backlighter x rays used for in Right diagnosis of
the foil ~

changing the shape of the perturbation and affecting the
saturation of individual modes [13—16]. It is this mul-

timode growth and saturation that ultimately affects ICF
capsule performance. We present here the first experi-
mental study of mode coupling and nonlinear multimode
saturation in ablatively accelerated foils.

The experimental setup is illustrated in Fig. l. Sinu-
soidal surface perturbations are molded onto one side of a
planar 750 p, m diameter, -50 p, m thick, p = 1.26 g/cm
CH(Br) foil (CH~, Br, with x = 0.054). The foil is
mounted across a hole in the wall of a 3000 p,m long,
1600 p, m diameter gold cylindrical hohlraum with the

perturbations facing inwards. The foil is diagnosed by
back illumination with a -700 p, m diameter spot of
x rays created by irradiating a rhodium disk with a single
Nova beam [21] of wavelength, energy, and temporal
shape of 0.53 p, m, 2.5 kJ, and 5 ns square, respectively.
The Rh L-band x rays to which the detector is sensitive
have a mean free path of -20 p, m in the CH(Br) foils.
The transverse modulations in foil areal density (f p dz)
cause modulations in the optical depth of the foil. Hence,
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FIG. 2. The total power versus time of the A = l/3 p, m drive
lasers is shown as the solid curve and the scale on the right,
and a measurement of the corresponding radiation temperature
is given by the dotted curve and the scale on the left. The
adopted drive temperature is the "best fit" to three independent
measurements and is shown by the dot-dashed curve. The
resulting relative x-ray flux is given by the dashed curve.

the transmitted backlighter x-ray flux, given by

I(x, r) = 10(r) e

bears the imprint of the modulated foil. The K corre-
sponds to foil opacity, and is calculated independently us-
ing the supertransition array model [22]. Hence, growth
of modulations in areal density can be deduced from
transmission measurements of I (x, t) T.he time-resolved
image, I (x, t), is recorded onto film using a 22X mag-
nification streaked Wolter x-ray microscope [23]. Only
modulations of I (x, t) in the transverse (x) spatial direc-
tion are of interest; time-dependent variations of the over-
all backlighter brightness divide out in the analysis. The
instrument spatial resolution is critical to proper interpre-
tation of the data, and is expressed as the modulation
transfer function. This represents the ratio of observed
to actual contrast, and for these experiments is given by
M(k) = 1/[1 + (ko.) ], with o = 6.3 p, m.

The low adiabat x-ray drive used here and in our
previous work [10—12] is shown in Fig. 2. It was gen-
erated by focusing eight 0.35 p,m, 2.2 kJ, 3.3 ns tempo-
rally shaped Nova beams into the Au hohlraum, where
they convert to mostly thermal x rays. The summed
power of the eight lasers on a typical shot is given by
the solid curve. The x-ray drive has been character-
ized by three independent experimental techniques: (1) a
direct measurement of the x-ray drive spectrum emerg-
ing from the hohlraum using a filtered photodiode ar-

ray [24], (2) shock breakout trajectory through an Al

wedge mounted on the hohlraum and viewed with a
streaked UV imager [21], and (3) accelerated foil tra-

jectory using streaked side-on radiography [10,11]. The
dotted curve shows an experimental radiation temperature
T„deduced from method (1), and the dot-dashed curve
gives the "best fit" T„to all three techniques, which rep-
resents the drive model used in the analysis presented
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FIG. 3. In (a) the initial perturbation patterns investigat-
ed are shown. The upper curve corresponds to a
~2 3 75 and 50 p, m, g2 3

= 2 p, m perturbation imposed
on a 54 p, m thick CH(Br) foil. The lower curve
corresponds to the sum of eight modes imposed on
a 50 p, m thick CH(Br) foil with wavelengths
A„=(180 p,m)/n, n = I —8, and amplitudes
—0.2939, —0.2770, —0.3153, —0.3156, 0.2319, 0.1830, 0.1326,
and —0.05867 p,m. (b) The solid curves show ln(exposure)
results from numerical simulations of the same perturbations
after substantial Rayleigh-Taylor growth. The dashed curves
show the same except in the absence of mode coupling. The
effect of the instrument spatial resolution has not been included
in these simulations.

here. The corresponding relative x-ray flux is given by
the dashed curve. The foil trajectories and hence the
gross hydrodynamics are reproduced very well with this
drive [11].

The multimode initial perturbations investigated are
of the form g(x) = gg„cos(k„x)and are shown in

Fig. 3(a). The upper side of each curve corresponds to the
foil. At the top is a large amplitude two-mode perturba-
tion given by A2 = 75 p, m, A3 = 50 p, m, and g2 = g3 =-

2 p, m, where the modes are enumerated as harmonics of
the longest repeating pattern (here, 150 p, m). At the bot-
tom of Fig. 3(a), we show a small amplitude eight-mode
perturbation given by A„=(180 p, m) /n, n = 1 —8. The
amplitudes g„,given in the figure caption, are on average
a factor of 10 smaller than those of the two-mode foil.
The initial perturbations are characterized by three inde-
pendent techniques —interferometry, contact profilometry,
and x-ray radiography —and are accurate to 10% or better.

In Fig. 3(b) we show the expected shapes of the per-
turbations late in time based on simulations using the
2D radiation-hydrodynamics code LAsNEx [25]. The solid
curves correspond to the multimode simulations and the
dashed curves represent the sum of the results where each
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individual mode was run alone. The perturbations evolve
into broad bubbles penetrating into the foil, corresponding
to regions of high ln(exposure), and dense narrow spikes.
The effect of mode coupling is readily apparent: the domi-

nant bubbles become broader and the dominant spikes
narrower. The overall size (e.g. , rms) of the perturba-

tion, however, is not significantly different due to mode

coupling.
We next turn to the experimental results. Presentation

of the data in Fourier space is the most illustrative. In

Fig. 4 we show the Fourier spectrum of ln(exposure)
from the accelerated two-mode foil at two times. At
2.0 ns, the total growth is small, about a factor of
2, and only the two preexisting modes, k2 and k3,

appear. Since the initial amplitudes are quite large, the

perturbation quickly evolves into the nonlinear regime
with the appearance at 3.3 ns of the second hartnonic of
k2, namely, 2k2. We also observe very distinct k3 k2

and k3 + k2 coupled modes corresponding to A = 150
and 30 p,m, respectively. Notably absent is the second
harmonic of k3, namely, 2k3. This is because 3k2, the
third harmonic of k2, has the same k but the opposite
sign as 2k3, leading to a cancellation. The results from
2D LASNEX simulations are shown with the dashed
histograms. The calculations slightly overpredict the
observed growth, but the shapes of the Fourier spectra are
in good qualitative agreement.

It is instructive to view these nonlinear effects within
the context of second-order perturbation theory [15].
For a 2D multimode cosine perturbation at an interface
of Atwood number A = (p&

—p2) /(pt + p2) = 1, the
spatial amplitude of mode k as a function of time can
be written as

1
gk(r) 'gk (r) + 2 k g g (rk)19k+k'(r)

kl

k, (r)rjk k (r), (2)

where k, k' ) 0, the superscript L denotes growth in

the linear regime, and we have assumed that yk ~ ~k.
This model is implemented quantitatively below, but we

consider here a qualitative description for the two modes

k2 and k3. For k = k3 k2, it is straightforward to show

that Eq. (2) reduces to

rIk3 k~5(r) ~ 2 (k3 —k2) gk5(r)rjk5(r) ~ (3)

where gk represents the spatial amplitude of mode k„had
the growth been entirely in the linear regime. Notice that

gi„k,has the same sign as the product gk, gk„whereas
gj„+k,has the opposite sign, in agreement with the data
and simulations shown in Fig. 4.

Consider next the small amplitude, eight-mode foil. In

Fig. 5 we show the time evolution of the dominant modes,

k& 4. The data, represented by the open circles, corre-

spond to the real component of the Fourier transform of
ln(exposure). Because of the cosine symmetry of the per-
turbation, the imaginary component should be identically
zero, and is taken as an estimate of the error bars, typi-
cally —20%. The solid curves correspond to the eight-
mode LASNEx simulation and the agreement with the data
is quite good. The dashed curves represent simulations
for each mode individually. (Similar single-mode simula-

tions have been tested favorably against data on separate
shots for perturbations of A = 30, 50, 70, and 100 p,m. )
The k& mode is a particularly interesting case. The sign
of its initial perturbation is negative [see the caption for
Fig. 3(a)], and had it grown alone it would have main-

tained this sign, as shown by the dashed curve in Fig. 5.
Late in time, however, the observed k& mode is distinctly
positive. This multimode effect can be qualitatively un-

derstood from Eq. (3). Both the ks —k2 and k4 —k3

coupled terms are positive, tending to cause a phase rever-
sal in the growth of the k~ mode, as observed. Note also
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FIG. 4. The solid histograms represent the experimental
Fourier spectra of In(exposure) corresponding to the two-mode
foil at 2.0 ns (bottom) and at 3.3 ns (top). The dashed
histograms represent the numerical simulations with LASNEX,
including the instrument spatial resolution.

FIG. 5. The open circles represent the experimental Fourier
coefficients of In(exposure) vs time for the first four modes
of the eight-mode foil. The solid curves represent the corre-
sponding eight-mode simulation with LASNEX, and the dashed
curves represent each mode run individually. The dotted
curves correspond to a second-order perturbation analysis. All
the modeling has been corrected for the instrument spatial
resolution.
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that the k2 and k3 modes saturate for t ~ 4 ns, whereas
in the single-mode simulations these modes grow to be
quite large. Mode coupling causes a redistribution of the
Fourier components, leading to a change in shape of the
perturbation, as shown in Fig. 3(b).

The second-order perturbation model described by
Eq. (2) is now applied to the eight-mode experiment. The
model is formulated in terms of spatial amplitudes, which
we define from the LAsNEX simulations by

g(p, m) = 8 fpdz
(4)

Pmax

Here, p,„and8 fp dz represent the foil peak density and
modulations in the foil areal density, respectively. For
each A„ in the eight-mode foil, 2D LAsNEx simulations
are run for very small initial amplitude perturbations,
ensuring that the RT evolution remains in the linear
regime. The zl„(t) in Eq. (2) are then obtained by
scaling by the ratio of actual to the assumed (very
small) initial amplitude. This method of generating the

zj, (r) from LAsNEx automatically includes the effects
of the time-dependent acceleration, compression, density
gradient, and ablation. The results from the perturbation
analysis are shown by the dotted curves in Fig. 5. In
the range where the model is applicable, t ~ 3.7 ns, the
data are reproduced reasonably well, namely, k2 and k3

grow less due to mode coupling and k~ reverses sign.
Beyond -3.7 ns, the effect of coupling on the growth of
the dominant modes is no longer insignificant, and the
approximations made in the model are no longer valid
[15]. We therefore truncate the dotted curves at 4.0 ns.

In conclusion, we have conducted two-mode and
eight-mode experiments to examine the effect of multiple
modes on perturbation growth. In the linear regime
the modes grow independently. In the nonlinear regime,
the modes become coupled and the k; ~ k, terms are
clearly observed, in agreement with simulations and
theory. This coupling leads to a redistribution of the
perturbation Fourier composition, corresponding to a
change in shape. The bubbles become broader and the
spikes narrower. The overall size of the perturbation,
however, is not significantly changed.
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