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Predictability of Large Avalanches on a Sandpile
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(Received 11 March 1994)

When grains are added to a large sandpile, quasiperiodic large avalanches maintain the steady state
mass. The buildup periods between the large avalanches contain many small avalanches. The size
distribution of the small events does not vary during a buildup period but their mean rate of occurrence
does. The qualitative behavior of the real sandpile avalanches is identical to the behavior of earthquakes
on a model fault proposed by Carlson and Langer. As that model suggests, the running total number of
small avalanches can in principle predict the occurrence of the large avalanches.

PACS numbers: 46.10.+z, 05.40.+j, 91.30.Px

Earthquake faults and sandpiles are examples of ex-
tended dynamical systems. Computer model earthquake
faults replicate many features of the seismic activity on
at least some real earthquake faults [1,2]. A model fault
consists of massive blocks coupled to one another and
to a fixed lattice by springs. The blocks are in contact
with a plate and are driven by friction as the plate slides
past them. A model earthquake results when blocks break
free and slide along the plate. One of the uses of these
models is to study the predictability of large, catastrophic
earthquakes [3,4]. Some of this work suggests that the se-
quence of small earthquakes might be used to predict the
time and place of major events [3].

We have measured the time dependence of the total
mass of a real conical sandpile as individual grains are
added to it The .addition of sand grains to the pile
causes occasional avalanches that carry grains off the pile.
The avalanches vary in size from a few grains to slides
that remove roughly one-third of the surface layer from
the pile. Avalanches on a sandpile are the analogs of
earthquakes on a real fault or block slides in the model
fault. We have found that features of avalanches on large
piles are qualitatively identical to their analogs in the
model earthquake fault as discussed by Shaw, Carlson,
and Langer [3]. Furthermore, like small events on the
model fault, the time evolution of small avalanches on a
real sandpile can in principle be used to predict the amval
of large avalanches.

Our experimental technique [5] is similar to the one re-
ported by Held et al. [6]. The mass of a conical sandpile
is monitored as grains are added to it. When the mass
changes by at least the mass of one grain, an event is said
to take place. The mass of the pile is recorded and the
time advances by one unit. We measure time in events
so the effective stress grows linearly when unrelieved by
avalanches. Our technique is insensitive to sand slides
that are entirely contained on the pile.

The avalanches on our sandpile are typical of the
avalanches seen previously on large piles. Large piles
have linear dimensions of at least 50 times the grain diam-
eter [7]. Typically large piles show quasiperiodic major

avalanches [5,6,8,9] separated by periods containing nu-

merous small avalanches [5,9]. Figure 1 shows the num-

ber of grains on the pile through almost 52500 events.
An arbitrary number of grains (-80000) has been sub-
tracted so that the fluctuations in the mass can be clearly
seen. Twelve abrupt decreases of between 2000 and 6000
grains occurring in a single time step are the most striking
feature. These are the major avalanches. Preceding each
major avalanche is a buildup period during which the ad-
dition of a single grain to the pile is the most common
event. However, on the average each buildup period con-
tains 110 small avalanches. They are more effective in
removing mass from the pile at the end of the buildup pe-
riod as can be seen by the decrease of the mean slope of
each buildup period as a major avalanche is approached.
In the data set there are 11 complete cycles consisting of
a buildup period and a major avalanche.

The size distribution of all 1189 avalanches in the 11
complete cycles is shown in Fig. 2(a). Because of their
sparsity, the data are binned for avalanches of 13 grains
and larger. The number plotted is the logarithm of the
number of avalanches in each bin divided by the total
number of avalanches and by the width of the bin. It is
the probability per unit size averaged across the bin width.
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FIG. 1. The mass of the sandpile as a function of time in
events. An event is a detected mass change. Large avalanches
are separated by buildup periods. Events that remove mass
become more frequent as a buildup period progresses.
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FIG. 3. A'"' vs t for the data shown in Fig. l. A'"' is the
running total number of avalanches. The curves become steeper
during each buildup period showing that the rate of small
avalanches increases as a major avalanche is approached.

FIG. 2. Size distributions of avalanches of size s grains.
(a) All avalanches. For small avalanches the distribution is
a power law, shown by the line. There is an excess of large
avalanches. (b) The dotted lines show the distribution of the
first 6 of the avalanches in each buildup period; the solid lines

show the distribution of the last 6 of the avalanches in each
buildup period. The straight line is the same line in (a). Within
statistical scatter, these distributions are the same and the same
as the distribution of small avalanches in (a).

Also shown is a power law distribution with a slope of
—2.23. Avalanches between 2 and 55 grains are
distributed according to this power law. The small
avalanches on large, uniformly rotated sandpiles follow
a power law with nearly the same exponent [9]. No
avalanches in the range from 56 to 2111 grains occurred.
Had the avalanches in this range been distributed ac-
cording to the same power law as the small ones, there
would have been 12 of them. There are 11 avalanches
in the bins between 2000 and 6000 grains, 2 orders of
magnitude more than expected from the extrapolated
power law. Overly frequent large events are seen in

models of earthquake faults [1] and sandpiles [10] that

take inertia into account, and in the size distribution of
real earthquakes [11].

The small avalanches remove more mass per unit time

during the later part of a period because they become more

frequent, not because they become larger. The dotted
curve in Fig. 2(b) shows the size distribution of the first

6 of the avalanches in each cycle. The solid curve is the

size distribution of the last 6 of the avalanches in each
cycle. The straight line is the —2.23 power law of Fig. 2(a).
Neither inspection of the two distributions nor comparison
of either with the distribution of all avalanches in Fig. 2(a)
forces the conclusion that the size distribution changes as
a buildup period progresses. This impression is confirmed

by the relevant statistical test [12].

Figure 3 shows the running total number of avalanches
versus time for all the data in Fig. 1. We will call this

quantity the total activity A'". The times of the major
avalanches are shown by the black triangles. During all
11 buildup periods the coarse-grained average slope of
the total activity versus time, the coarse-grained avalanche
rate, smoothly increases. This accounts for the increased
How rate off the pile as the end of a cycle is approached.

To examine the time sequences of small avalanches
more closely we will examine the running total number of
avalanches in each cycle. We calculate the running total
number of avalanches versus time beginning both from
zero just after a major avalanche and ending just before
the next large event. It is convenient to convert these
data into a continuous function of time by extrapolating
straight lines through successive discrete data points.
Normalizing the resulting function by dividing the time

by the length of the period and the running total number
of avalanches by the total number at the end of the cycle
creates normalized total activities a„(r). Here n is the

cycle number and r the normalized time. Both run from
0 to 1 for each n. The average of all 11 a„ is shown
in Fig. 4 along with a smooth curve, a graph of r .
The average rate of small avalanches, the derivative of
the curve in Fig. 4, increases linearly from zero between

major events. The time evolution of avalanches on

conical piles and on uniformly rotated sand slopes are
different [9]. It is not clear whether the difference is due

to the different geometries of the piles or the different
driving mechanisms in the two experiments.

The qualitative behavior of the avalanche data shown

in Figs. 2, 3, and 4 is strikingly similar to the behavior
of earthquakes on the model fault of Carlson and Langer
[13]. Like the avalanches, the model earthquakes show

a power law distribution of small quakes and an excess
of major earthquakes. The size distribution of model
earthquakes varies only weakly across a cycle, and

the rate of small earthquakes increases between major
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FIG. 4. The normalized total activity during a single cycle
averaged over all 11 complete buildup periods. The smooth
curve is r . The average avalanche rate grows linearly during
each buildup period.

quakes. Sandpile and fault models differ quantitatively.
The model earthquakes have an inverse size distribution,
consistent with the Gutenberg-Richter law [14]. The
curvature of the average normalized total activity is much
stronger for the model earthquakes than it is for the
real avalanches. Nevertheless, the qualitative similarity
of the two systems suggests that inferences drawn from
the earthquake model might apply to sandpile data.

Major avalanche prediction is an example. The lengths
of the buildup periods and the total activity at the end of
each cycle are broadly dispersed. The cycle lengths vary
from 2268 events to 5627 events, and the total activity
at the end of a cycle varies from 29 to 183 avalanches.
By themselves these numbers are weak indicators of the
completeness of a cycle. However, the running total
number of small avalanches seems correlated with the
arrival of major avalanches, as seen in Fig. 4. Based on
similar behavior of the total earthquake activity generated
by the model, Shaw, Carlson, and Langer [3] have
remarked that these functions are useful predictors of
major earthquakes. We can apply this suggestion to the
avalanches on our sandpile.

The total activity can be used to predict major
avalanches only if the total activity beginning at the
start of a buildup period and ending at an arbitrary time
during a cycle is distinguishable from a complete cycle
total activity. A reasonably reliable assessment of the
completeness of the total activity can be made. If the a„
are plotted on the same axes, they divide the r-a„plane
into two regions. One region lies between the upper and
lower envelopes of all the a„and the other lies outside
both envelopes. For clarity a», a7, and a3 along with 7

are shown in Fig. 5(a). Over most of their length a~~ and
a3 form the upper and lower envelopes for all the a„. To
decide whether a major avalanche is due at an arbitrary
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FIG. 5. (a) Normalized total activities for cycles 11, 7, and
3 (top to bottom). If normalized total activities were plotted
for all 11 cycles, the curves would lie between the upper
and lower curves shown here over nearly the entire time
interval. Incomplete segments of these three cycles are
rarely classified as complete. (b) Normalized total activity for
cycle 4. Incomplete segments of this cycle when normalized
are mistaken for complete cycles almost 11% of the time.

time in a buildup cycle, we construct the normalized
total activity function from the beginning of the cycle
to that time using exactly the procedure that generates
the a„ for complete cycles. If that function is entirely
contained within the region between the envelopes, it is
indistinguishable by our criterion from a complete cycle
normalized total activity. We predict that a major event
is imminent. Otherwise the cycle is declared incomplete
and a major event is not immediately expected. By
construction this procedure recognizes actual complete
cycles and correctly anticipates all the major avalanches.

The suitability of the total activity as a predictor
of large events becomes apparent when the number of
incorrectly identified incomplete cycles is examined. For
each cycle we have constructed normalized, total activity
curves ending between 20% and 100%, in 0.1% steps, of
the way through the cycle. Shorter partial cycles contain
so few events they are obviously incomplete. Only
2% of the resulting incomplete normalized total activity
curves lie between the upper and lower envelopes and are
consequently misidentified. In other words, only during
scattered short periods totaling 2% of a typical cycle
is a major avalanche erroneously anticipated. Cycle 7
in Fig. 5(a) is typical with only 2.1% misidentifications.
Like most cycles, the misidentified incomplete activities,
or false alarms, occur primarily during the last 20% of
the cycle. A small rate of false alarms is not built into
the algoritlun. Rather it demonstrates the existence of
recognizable differences between the partial and complete
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cycle total activities. This is significant because if no such
differences could be identified, time prediction of major
avalanches based on the total activity would be impossible
despite the correlation evident in Fig. 3.

If the complete activities followed an exact power law,
as the average tends to in Fig. 4, incomplete normalized
activities would look identically complete by our criterion.
The normalization procedure maps a given power law on
the range [0, r] into the same function on the range [0,1]
for all t. The fluctuations from the mean behavior do
not map into themselves. Paradoxically the fluctuations
are responsible for the spread in the complete cycle
normalized activities and the success of the discrimination
procedure. Cycle 7 in Fig. 5(a) deviates more from the

smooth quadratic curve than does cycle 4 in Fig. 5(b).
Cycle 4 contains false alarm periods totaling almost 11%
period of the cycle. Even then, they all occur during the
last quarter of the cycle.

We have demonstrated that normalized activities from
partial avalanche cycles are highly distinguishable from
normalized activities from complete cycles. It is likely
that more sophisticated recognition techniques can reduce
the false alarm rate further. Finally, if modeling of
sandpile avalanches could be used to locate the upper and

lower envelopes, true major avalanche prediction could be
investigated. Establishing a similar scenario is among the

goals of fault models [4].
It is remarkable that temporal patterns identified in a

fault model are found in a sandpile because the underlying

dynamics are very different. The blocks in the fault are
bound, interact with each other harmonically, and are
driven by a nonlinear external force. The sand grains

are unbound, experience only hard core mutual repulsions,
and are driven by gravity. Nevertheless, when driven

both systems maintain a steady state by relaxing in

similar ways.
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