
VoLUME 73, NUMBER 4 PH YS ICAL REVIE% LETTERS 25 JULY 1994

Sifurcations and Spatial Chaos in an Open Flow Model
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It is shown that a coupled map model for open Aow may exhibit spatial chaos and spatial
quasiperiodicity with temporal periodicity. The locations of these patterns, which cover a substantial

part of parameter space, are indicated in a comprehensive phase diagram. In order to analyze the
encountered phenomena, a novel class of spatial maps is introduced which is very eNcient in accurately
reproducing the original spatial patterns. It is found that temporally period one spatial chaos is
convectively unstable, and that it is possible to predict an essential aspect of the bifurcation behavior of
the coupled system solely by considering its corresponding spatial map.

PACS numbers: 05.45.+b, 47.27.Ak

For the understanding of many complex systems in

nature, the study of simple chaotic paradigms has proven
to be an invaluable tool. Sometimes, substantial insight
can be gained by only considering temporal aspects. In
many cases, however, it is imperative to also explicitly
take space into consideration.

In recent years this has led to great interest in the
dynamics of coupled map lattices (CML) which are not
only spatiotemporal, but can also be classified by a dis-
tinct number of universality classes. Particularly, coupled
logistic maps have been studied widely for their combi-
nation of computational efficiency and phenomenological
richness [1—4].

In this Letter, we will investigate the nature of spatial
chaos by introducing a class of spatial maps which can
accurately reproduce the spatial patterns of the one-
way coupled logistic lattice (OCLL) in parameter regions
where the latter is temporally periodic.

In the different context of a proposal for a distributed
optical element system, Otsuka and Ikeda [5] also dis-
cussed the stability of spatial chaos and pointed out the
importance of the relationship between spatial Lyapunov
exponents and dynamic stability (for other work related to
spatial chaos see also, e.g., [6]). Otsuka and Ikeda's con-
clusion that in their system spatial chaos is dynamically
unstable in the case of unidirectional coupling is con-
firmed by our findings which indicate that spatial chaos
is unstable in a range of moving frames.

The OCLL, due to its conceptual reminiscence with
open fluid fiow often referred to as a model for open fiow,
is defined as

x„',= (1 —e)f(x„')+ ef(x„' '), (1)
where the local element is the logistic map f(x„)=
1 —ax2. The parameters are the nonlinearity u and the
coupling constant e, awhile i is the index for the lattice
sites, and n the discrete time.

Many interesting features of (1), like spatial period dou-
bling and selective amplification of noise, were already
reported in [7] and [g—10], but those investigations did
not take the full range of possible coupling constants
(0.0 ~ e ~ 1.0) into account and were generally limited

to e ~ 0.5. Recent studies of the diffusively coupled lo-
gistic lattice, of which the OCLL is in principle noth-

ing but a version with a maximally asymmetric coupling,
however, have shown that larger values of e may yield un-

expected phenomena like the traveling wave or suppres-
sion of supertransient chaos at high nonlinearity [11,12].

In the OCLL, for larger values of e, we have found
the fascinating novelty of spatial chaos with temporal
periodicity (see also [13]). Consequently, with regard to
its spatiotemporal properties, the dynamics of the OCLL
for nonlinearities past the accumulation point of the single
logistic map can be described as dominantly temporal
(0.0 ~ e ~ 0.05), spatiotemporal (0.05 ~ e ~ 0.45), or
spatial (OA5 ~ e ~ 1.0).

A rough phase diagram for the OCLL is given in Fig. 1,
where the basic types of patterns we would like to distin-
guish here are marked as follows: spatially chaotic and
temporally periodic patterns (SC), spatially (and tempo-
rally) periodic patterns (SP), spatially quasiperiodic pat-
terns with temporal periodicity (SQP), and spatiotemporal
patterns (STP). The STP region includes various kinds
of patterns like pattern selection with remnant chaos, spa-
tiotemporal intermittency, and a large area of spatiotem-
poral chaos (STC). The region marked as "ZZ" is the
well-known zig-zag pattern which is spatially and
temporally period 2, and therefore a special case of
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FIG. I. Phase diagram for the open Bow model. The system
size is N = 384.
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x„' = F (x„'), (2)

where F~(x„') is the kth iterate of F(x„'). We can now

formally define a spatial map corresponding to Eq. (2) in

an implicit form as

G"(x') = -x' + F"(x'), (3)
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FIG. 2. Spatial chaos with temporal periodicity. n = 1.7,
e = 0.45, and N = 384. The temporal periodicities are 1 for
i =1—2, 2fori =3—16, 4fori =17—31, 8fori =32—78,
16 for i = 79—127, and 32 for i = 128—384, respectively.

SP. Throughout, the left boundary was fixed to 0 (the
exact value does not seem to matter much).

In order to illustrate the two temporally periodic and
spatially nonperiodic patterns, space-amplitude plots of
SC and SQP are displayed in Figs. 2 and 3, respectively.
In the case of SC (of which a definition will be given
below in terms of the newly introduced spatial map),
the temporal periodicity rapidly bifurcates to 32 but then
remains constant until the end of the lattice. In the case
of SQP, after the initial bifurcations, the pattern has a
temporal periodicity of 8 with a spatial period close to 14,
while the points of the return map lie on an eye-shaped
loop indicating quasiperiodicity.

The various areas in the phase diagram are separated

by sharp lines in order to give some impression of their
location. In fact, however, the lines are not very sharp
at all and in many cases multiple attractors belonging to
different basic patterns exist for the same parameters. In
some cases this might be related to the dependence of
the spatial locations of the temporal bifurcation points
on the initial conditions, and thus mainly reflect the
difference between upflow and downflow. In other cases,
however, different types of patterns may exist for the
same temporal periodicity, indicating genuine multiple
states. The diagram furthermore only indicates the most
common patterns in a larger area of parameter space. That
is to say, small SQP regions within the SC region, e.g. ,

were not taken into consideration.
In order to analyze the phenomenon of purely spatial

chaos, we employ the one-way coupling and the temporal
periodicity to introduce a spatial map as an implicit
equation of equal-time spatial variables. If we define

F(x„')= (I —e)f(x„')+ ef(x„' '), then a lattice site x„'
which has a temporal periodicity k must fulfill
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FIG. 3. Spatial quasiperiodicity with temporal periodicity.
(a) n = 1.45, e = 0.5, and N = 1024. Only the first 384
sites are shown, the remaining sites are the same. The
indicated periodicities are temporal periodicities. (h) Return
map corresponding to (a) for sites i = 256—1024.

with which a lattice can be generated by successively
finding the roots of Eq. (3) and incrementing the index i

Since Eq. (3) depends on k variables, x' ', . . . , x' k need
to be supplied as initial conditions (note the absence
of the time index n) Thus . we can reduce even an

infinite lattice, and hence an infinite dimensional system,
to a k-dimensional map, while substantially improving the

opportunities for mathematical and numerical analysis. In
general, of course, an equation like (2) will have a large
number of solutions, especially if the periodicity k is high.
We will now show, however, that for sufficiently large e
there is only one.

The derivative of Eq. (3) is given by
m=k —

1

G"'(x') = —1 + (1 —e)"(—2n) K (x'), (4)
m=0

Thus, the spatial map (3) exactly represents the original
model (1) as long as condition (5) holds [it should be
noted that this condition covers a much larger area than

where E (x') is the mth iterate of K(x') = (1—
e)f(x') + ef(x' ') and Ko(x') = x'. If G"'(x') ~ OVx',

there is at most one root. Since )g o K (x')~ I

this will be the case if (1 —e)"(—2n)" ( 1, i.e., if

le~ 1—
2A'
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the region which has a temporal periodicity of one in
the open flow model, and that it also holds for k
in (3)].

Numerically, it was furthermore verified that for basi-
cally the entire temporally periodic region of the OCLL,
the corresponding spatial maps had only one root [13],
while the STP area yielded a great multiplicity of roots.
We therefore believe that the arise of spatiotemporal pat-
terns below e;„(a)may be associated with the occur-
rence of multiple roots in the spatial map which prevent
the system from reaching a periodic state.

With the help of our spatial map, spatial chaos can
formally be defined by the requirement that AG ) 0,
where AG is the spatial Lyapunov exponent of Eq. (3) (the
temporal Lyapunov exponent for a temporally periodic
lattice site will of course be negative, see also below).

In most cases, an analytical solution for Eq. (3) cannot
be found. For k = 1, however, it is a quadratic equation,
and the root is given by (the other root is outside of the
allowed domain)

—1 + $1 + 4(1 —e)a[1 —eu(x' ') ]
X

2(1 —e)n (6)

This forms a spatial map, which, contrary to Eq. (3), is
of an explicit nature and therefore extremely efficient in
generating the associated spatial patterns.

For values of the coupling constant e where the OCLL
in principle has a temporal periodicity of one, and where
thus the spatial map (6) is a valid representation of
the OCLL, Eq. (6) undergoes a bifurcation cascade to
chaos as is shown in Fig. 4. These bifurcations are
strictly in the spatial direction, and as such do not affect
the temporal periodicity of the original model (1), and
accordingly the possibility of spatial chaos is a natural
consequence. It should be noted here that the spatial
bifurcations mentioned above are fundamentally different
from the spatial period doubling reported in [7]. In the
former case, the temporal periodicity does not change,
while a parameter does, and in the latter case, the period
doubling occurs in the spatial direction and coincides
with a doubling of the temporal periodicity, while the
parameters remain the same.

With the help of our spatial map, we can accurately
reproduce the temporally periodic spatial patterns of the
OCLL. In the OCLL, however, the temporal periodicity
is not necessarily a constant throughout the lattice. If we
consider Fig. 3, e.g., there are three homogeneous sections
with temporal periodicities of 1, 2, and 4, respectively,
and the spatially quasiperiodic pattern has a temporal
periodicity of 8. Indeed, the k = 1 spatial map yields
exactly the first section, the k = 2 the second, etc.

From this two important questions arise: Why does
the OCLL bifurcate temporally, despite the existence of
a stable and accurate solution in the spatial map, and, is it
possible to use the data from the spatial map to predict
whether the OCLL will undergo temporal bifurcations
or not?

These questions are naturally related to the one of
stabi1ity, and we will now show that both can be answered
by considering comoving Lyapunov exponents [8] with
regard to the spatial map. Conventionally, the spectrum
of Lyapunov exponents would be determined by taking
the logarithm of the eigenvalues of the product of Jacobi
matrices, which, in this case would yield

1l~T
A' = log(1 —e) + —g log f'(x„'), (7)T

where T ~. For large e, the log(1 —e) will cause
all the Lyapunov exponents to be negative and there
seems to be no reason for the lattice to temporally
bifurcate at some point downflow. A different approach
is therefore necessary and the distinction between absolute
and convective stability, which were shown to be essential
concepts for the understanding of open flow [8] and which
have no direct counterpart in the spatial maps, needs to be
taken into account. A system is called absolutely unstable
if it is unstable in any frame, and convectively unstable if
it is only unstable in some moving frame.

Let us consider the k = 1 case. In a similar way
as for the homogeneous fixed point state [2], it can be
argued that, for large e, the Lyapunov exponent in the
comoving frame that yields the maximum growth of an
initial perturbation in the OCLL may be obtained as [13]

I. ,„=— g loglf'(x') I.
1

i=n —1

(8)
n
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FIG. 4. Bifurcation cascade of the k = 1 spatial map (6). The
nonlinearity is o. = 1.5.

We can then generate a spatial pattern with the spatial
map and use Eq. (8) to determine the pattern's stability in
the comoving frame. Our numerical simulations indicate
that if L,„(0, the pattern is absolutely stable, and a
valid solution of the OCLL for all system sizes. If,
however, L,„~0 (while A' & 0) the pattern generated
by the spatial map is convectively unstable, and a valid
solution of the OCLL only for those lattice sites which
have the same temporal periodicity.

In Fig. 5, the Lyapunov exponent according to Eq. (8)
is plotted versus the coupling constant e together with
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FIG. 5. Lyapunov exponent versus the coupling constant e.
The nonlinearity is n = 1.5. Solid line: comoving frame.
Dotted line: regular Lyapunov exponent of Eq. (6).

the regular exponent for Eq. (6). In both cases, the
necessary values of x' were obtained with the help of the
spatial map (6). Positive comoving Lyapunov exponents
can clearly be seen for parameter values where the
k = 1 spatial map is periodic, hence implying regions
of convective instability. Our numerical results indicate
that this corresponds to states of the OCLL which
will temporally bifurcate. In this way, the spatial map
provides us with an excellent tool to predict whether the
original one-way coupled logistic lattice will bifurcate
or not.

Since the Lyapunov exponent in the comoving frame
is larger than the spatial one, it is implied that for the

temporal period one case true spatial chaos does not
exist. However, the dips between the bifurcation points,
corresponding to superstable orbits which also exist in the

periodic windows, extend to minus infinity, guaranteeing
ample stability in their neighborhoods to conclude that

spatial patterns arbitrarily long periods (i.e., in a practical
sense virtually indistinguishable from chaos) can stably
exist in the one-way coupled logistic lattice.

So far all numerical data obtained for our open How

model within the spatial chaos regime (including k ) I

cases) support the following conjecture.
Conjecture. —Spatial chaos is convectively unstable

and subjected to further bifurcation downAow. A plau-

sible argument for this conjecture is the following: If spa-
tial chaos were stable, any sufficiently small perturbation
of the state would decay in average over time at all lattice

points. On the other hand, with the help of the spatial

map, we can find a spatial sequence arbitrarily close to
the original spatial pattern, which is also a periodic solu-

tion (attractor) of the original open liow model. Then, a
perturbation corresponding to the difference between the

above two solutions cannot decay in the original open
How model. This contradicts with the assumption of sta-

bility [14].

Even though convective instability eventually seems to
lead to temporal bifurcations, these may occur only very
far downflow. For large e, it was, e.g. , verified that
the temporal periodicity never becomes very high in a
lattice of 10 sites. In a practical sense, therefore, spatial
chaos with temporal periodicity may very well occur in a
limited region of the lattice. The main difference with the
convectively stable case lies in the stability against noise.

In conclusion, we found spatial chaos with temporal
periodicity to exist in the one-way coupled logistic
lattice. With the help of a ne~ly introduced spatial map
which can exactly reproduce the spatial patterns of the
spatiotemporal coupled map lattice, it was not only shown
that spatial chaos is convectively unstable, but also that
stable patterns can exist arbitrarily close to chaos. By
employing the concept of comoving Lyapunov exponents,
we furthermore found that an important aspect of the
bifurcation behavior of the OCLL can be predicted on the
basis of the corresponding spatial map.
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