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We present a theory of the vortex-liquid-to-solid transition in homogeneous quasi-2D superconduc-
tors. The free energy is written as a functional of the density of zeros of the fluctuating order parameter.
The transition is weakly first order and well below the H;(T) line. Transition temperature, discontinui-
ties of the average Abrikosov ratio and of the average Cooper pair density, the Debye-Wailer factor,
and the latent heat are in good agreement with Monte Carlo simulations. The density is only weakly
modulated in the "vortex-solid" phase, consistent with the density-wave behavior.

PACS numbers: 74.60.Ge, 71.30.+h, 71.45.—d

The experimental observation [1] of the wide region
around the H, 2(T) line where the Abrikosov lattice ap-
pears melted demonstrates the importance of thermal
fiuctuations in high-temperature superconductors (HTS).
Such fluctuations are generally important in quasi-two-
dimensional (2D) materials, such as thin films or layered
systems with weak interlayer coupling. The existence
and the nature of the ordered low-temperature phase are
still matter of some controversy. The early theories [2]
assumed the ordered phase at low temperatures and pro-
posed dislocation unbinding as a mechanism of second-
order melting transition or used the Lindemman criterion
to locate the melting point [3]. However, even the very
existence of the vortex-lattice phase, which is the start-

ing point of these theories, cannot be taken for granted
[4, 5]. External magnetic field causes the system to ap-
pear D —2 dimensional on the perturbative level, and the
perturbation theory carried out to the eleventh order [6]
shows no sign of the low-temperature Abrikosov phase in

2D. Renormalization group analysis near the upper criti-
cal dimension D = 6 found the continuum of relevant
charges to be generated by the renormalization procedure
and indicated that the transition into the Abrikosov vortex-
lattice state might be first order, as expected from Landau
argument [7]. The relevance of this analysis for real su-

perconductors, however, is not obvious since the lower
critical dimension for the Abrikosov transition is D = 4
[5]. Recent Monte Carlo (MC) simulations [8—10] re-
vealed a weak first-order vortex-liquid-to-solid transition
in 2D. At present, our information about this transition
comes almost exclusively from such numerical work.

The main purpose of this paper is to develop a working
analytic theory which has predictive power and which can
be applied to a variety of experimentally relevant issues.
We propose a density-functional representation of the free
energy for zeros of the fluctuating superconducting order
parameter, with the exact two-body correlations built in.
Our theory describes strong fluctuations, in the sense that
it does not rely on the expansion around the Abrikosov
lattice. In fact, it is an expansion around the liquid state,

allowing us to study non-Abrikosov phases [5]. It is
shown that above a certain value of the vortex liquid
structure factor the triangular lattice has lower free energy
than the uniform configuration. We calculate several
typical quantities like the latent heat and the change in

thermal average of Abrikosov's ratio at the transition and
use the information on the dependence of the structure
factor on temperature from the existing MC simulations
to locate the transition temperature. Obtained results
are in good agreement with those found in numerical
simulations.

The starting point is the Ginzburg-Landau (GL) par-
tition function for a homogeneous 2D superconductor
in perpendicular magnetic field, with Auctuations of the
magnetic field neglected (tt » 1). We are interested in

the regime where the Landau level (LL) structure of
Cooper pairs dominates the fluctuation spectrum: This
is the case for fields above Ht, = (8/16)H, z(0)(T/T, o),
where 9 is the Ginzburg fiuctuation parameter [11]. (For
example, in BiSrCaCuO 2:2:1:2,8 —0.045 and Ht, -. I

T.) In this regime, the approximation in which one retains

only the lowest Landau level (LLL) modes describes es-
sential features of the problem. The partition function is
then Z = f D[P'P] exp( —5), and

5 = —ct'(T) d r )P(r)[ + — d'r (P(r)l
T

where ot'(T) = u(T)[1 —H/H, .q(T) J, d is the thickness of
the film or the effective interlayer separation, and ct(T)
and P are phenomenological parameters. We choose
to work in the symmetric gauge so that the order
parameter is a holomorphic function and can be written

as P(z) = P [P,(= —=;) exp[ —
(~z~ /4)] where N is the

area of the system in units of 27rl, - —— (x '. - iy)/l
and I is the magnetic length for the charge 2e. The
partition function can now be expressed in terms of
variables P and (z;j [8]. They represent two distinct
tendencies in a superconductor; P describes the overall

growth of the local superconducting order, while ];,I
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represent the remaining weak lateral correlations between
vortices. The integration over @ can be performed
exactly in the thermodynamic limit N ~, yielding Z =
fg;(dz;dz;/2~) f Plz; —z, l exp[ —S'), where

+ —(V + 2) + sinh ' V/K2
2 2

V((z;j) = gf /~f, f"((z;))= f(dz dz'/27rN) P; lz —z;l"
X exp[ —(n lzl /4)], and g = n'Qm12d/. pT Va. riable @
is determined by

(lQl )f = V (1+ Ql + 2V 2).
T

(3)

The "smooth" part of s((P)) (4) can be evaluated by using
the "98%—2%" procedure of [11]. Here we concentrate
on the 2% piece of the entropy carrying the information
about phase transitions.

To study the solidification transition it is beneficial to
change variables from particle coordinates to density of
particles. To achieve this we insert 1 = fDp(r) B[p(r)—
QB(r —r;)] in Z (2) [12]. After the 8 function is
expressed as an integral over auxiliary field (I)(r), the
coordinates of vortices are integrated out. The partition
function becomes Z = fDp(r)D@(r) exp[ —S"),

s" = U(p(r)] —f d're(r)p(r)

—Nln d rexp —4 r

The original problem is now equivalent to the thermo-
dynamics of classical 2D system of particles which we
call dense-vortex plasma (DVP) [8]. We note two impor-
tant features of the DVP system: (1) Particles interact via
long-range multiple-body forces causing the system to be
incompressible, and (2) the system is scale invariant so
that the thermodynamics depends on a single dimension-
less coupling constant g. Previous MC simulations show
the transition from a liquid to a solid state taking place at

gM = —7 [8—10]. From Eq. (2) we can write the exact
free energy per vortex as f(g)/T = S' —s((pA)) where

(pA) is the g-dependent thermal average of the Abrikosov
ratio pA({z;)) = f4/(f2)2, determined by minimizing f(g).
The entropy s((pA)) is given by

where U[p] is the exact energy density functional de-

termined by the details of the DVP interaction. The
full form of U[p] is not important for the present pur-

poses; we expand U in terms of multibody interactions
and keep only the first, two-body term so that U =
2 fp(r])v(r] —r2)p(r2) + O(p ). After this truncation
of the energy functional, density is integrated out, leaving
the partition function as an integral over field 4&(r) with

the action

F 1 —1dr] dr24(r])v (r] —r2)4(r2)
T 2

—Nln d rexp —4 r

We take Fq. (6) to be the desired expression for the

mean field f-ree energy of the vortex system. Under this
assumption it follows that v(r)—= c(r), where c(r) is
the direct (Ornstein-Zernike) correlation function of the
vortex liquid whose Fourier transform is related to the
structure factor via the relation S(q) = [1 —c(q)] [13].
The structure factor S(q) is the Fourier transform of the
connected density-density correlation function.

Before proceeding with the analysis of the phases
described by the free energy (6) let us comment on the
validity of the truncation of the DVP energy density
functional. Even if the particles interact only via two-
body forces all multibody correlations will be generated
and the true free energy would contain additional terms
of higher order in field C)(r). Therefore, the fact that
vortices in DVP interact through multibody forces makes
the approximate free energy (6) no less appropriate here
than for the ordinary correlated liquid. In fact, one
might expect that the long-range interaction operating in
DVP will make the system only more mean-field-like.
The free energy (6) may be thought of as a harmonic
approximation around the liquid state and this particular
form is appropriate for an incompressible system [13].

We assume that DVP freezes into a triangular lat-
tice with period a, a2 = 4n. /+3 and we work in units
l = 1. Note that this assumption is not necessary and
that we could consider other lattices. Actually, at this
point it is not obvious that the ordering wave vector
will be in any simple relationship to the magnetic
length. Within the resolution of the MC data however,
the strongest tendency for ordering corresponds to the
triangular modulation. We determine the solid phase
by two real order parameters 4& and 42 in the follow-
ing way: 4(r) = (I)o 2g;, 4;f;(r), where f](r) =
(1/2) gG, exp[(iG]) . r] = cos(ax) + 2cos(a+3y/2) X
cos (ax/2) and the sum runs over six shortest re-
ciprocal lattice vectors lGl = G] = a. The same
sum, but over next six shortest reciprocal vectors
lGl = G2 = a~3 determines the function f2(r) =
cos(a ny) + 2 cos (3ax/2) X cos(any/2). Inserting this
into expression (6) we get two-order-parameter form of
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the free energy per vortex,

~'o''+a, +3/T 2Co ) C
E

(
ln d rexp 2 4;;r

2.0

1.5—

where cia = c(Gi~2). The free energy is minimized by
the solutions of the equations:

4.0 4.5
s,

5.0 5.5 6.0

34, f d2r f~(r) exp 2 g, , 4;f;(r)

f d'r exp 2g,', iI&; f;(r)

for j = 1, 2. The equation for the uniform component
is 4o = —co, which means that the average density
p(G = 0) = 1 does not change. It is easily seen that

ff, (r) = 0 and one solution of the equations is always
4& = 42 = 0 which describes the liquid state of DVP.
To find a nonzero solution, we choose a pair (ci, c~),
numerically solve Eqs. (8), and compare free energies of
the solid and the liquid configurations. This way one
obtains the crosses joined by the full line with a negative
slope on the structural phase diagram presented on Fig. 1.
For values of S~ and S2 above the line triangular lattice
vortices is the stable phase, while below it DVP is in
the liquid phase. The values of order parameters are
approximately the same for all points on the transition
line and they are 4& = 0.50 and 42 = 0.10.

To estimate the value of the coupling constant gM
~here the DVP freezes the information on S~ and S2 as
functions of g is needed. The vortex structure factor can
be found by using the perturbation theory to determine
the structure factor for ~t'ai(r)~, and then connecting the
two through the expression for P(r) given below Eq. (1)
[14]. While this is possible in principle it is more
expedient here to utilize the vortex structure factors
from MC simulations [8, 15]. Particularly useful is a
detailed analysis of the peaks in the vortex structure
factor by O' Neill and Moore [15]. From MC simulations
in spherical geometry they find that, for 5 & g2 & 50,
both peaks depend approximately linearly on g-'. The
straight line with positive slope in Fig. 1 represents the
Si —S2 relation derived from there. Two lines intersect
at S~ = 4.45 and S2 = 1.47, which gives g = —6.5.
Interestingly, around this value of the coupling constant
O' Neill and Moore first start to see critical slowing down
of the dynamics in their MC simulations, but they argued
against finite temperature phase transition. Our result is
in good agreement with MC simulations in Refs. [8—10].

The main features of DVP (long-range interactions,
incompressibility) resemble those of another well studied
classical system, namely, 2D one component Coulomb
plasma (OCP) [16,17]. It is therefore not surprising that
the values of the first two peaks of the structure factor
that we found at the transition closely match the numbers

I=IG. 1. Structural phase diagram for vortex system in terms
of first two peaks of the structure factor of vortices. Crosses
denote the values of 5; and 5. where the vortex solid becomes
energetically favorable (transition line "T"), and triangles mark
the points where the solid first becomes locally stable (spinodal
line "5"). The lines through crosses and triangles are drawn to
guide the eye. The line with positive slope depicts the 5', —5-
relation inferred from Mc simulations [15]. The transition
occurs at the intersection of this line with the transition line.

found in MC simulations there. In particular, the value of
S& is very close to 4.4 which is known as the 2D version
of the Verlet criterion. For comparison, our number for
S~ is much worse for the hard-disk system where it equals
1.9 [16]. This is because the system of hard disks is
compressible and the proposed form of the mean-field free
energy (6) ignores the change in average density at the
freezing transition.

Since the transition takes place at a finite value of
S~ it is first order, in agreement with recent experi-
ments in clean YBaCuO single crystals [18]. The la-
tent heat comes solely from the structural change at
the transition and it equals Q = NTM3gM g, , [it;/(5;
1)] [dS; /dg ]. This gives Q/NTM = 0.30, close to ().38
found in MC simulations [9, 10, 16]. Going back to the
exact expression for the free energy of DVP [Eqs. (2)
and (4)] it follows that the thermal average of Abrikosov
ratio has a discontinuity at the transition A(pz)/(p, , ):==

(p~)b, Q/gM2NT~ =0.01 if we t-ake (p~) =- 1.2 at g:--
gM. Invoking Eq. (3) we see that the spatially averaged
(~p(r)~2) has a discontinuous jump of about 1%. This
agrees with the results of Refs. [9] and [10]. The Fourier
components of the density of vortices can be determined
from

Jd 'rexp[iG . r -— ~I (r)]
p(G) =

l d~r exp[ —4'(r)]

and the Debye-Wailer factor is given by v(G) = ~p(G)( .

We find that for ~G~ ~ Gi, p(G) = 0.72exp( —A"G ) with
A = 0.47. Similar Gaussian falloff was found for freezing
into 30 bcc or fcc lattices, but with smaller coefficient
A (Ab„. = 0.34, Ai.„.„. = 0.19 [13]). The fast decay of the
Debye-%aller factor in DVP indicates that the transition
is very weakly first order and the density modulation is
rather small right below the transition.
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The present scheme allows us to examine the possibil-
ity of the high temperature solid phase. We determined
the values of (c~, c2) where the local 4~ 4 0, 4q P 0
minimum of the free energy first appears; at that point
free energy of the liquid state is still lower than that of
the solid. In this way the triangles joined by the dashed
line on Fig. 1 are obtained. Intersection with the S) —S2
line then determines the spinodal point: g,h

= —6.25.
The interval Agsh = g,h

—g~ = 0.25 agrees well with
the value of 0.2 obtained in Ref. [9] for the finite size
system. The supercooling of the liquid phase is also
possible, and the lowest g = g„where the liquid phase
is locally stable is given by the value where the first
peak of S(q) diverges. From the data in Ref. [9] we ex-
pect that the interval Ag„= gM

—g„ is of the same
size as Ag, h. The supercooling and the superheating data
from the same reference indicate that there is a well de-
fined critical value of the Abrikosov ratio (PA) = 1.18
at which the DVP system can undergo a continuous
transition.

The vortex-liquid freezing transition discussed here is
not a superconducting transition in the sense of breaking
of U(1) symmetry [5]. It is best thought of as a
transition to a charge-density wave of Cooper pairs. This
is consistent with the weak density modulation of the
ordered phase. The superconducting pairing susceptibility
remains short ranged in this density wave, although its
range becomes » l as density modulation increases. This
phase should be distinguished from other phases described
in the literature [19]. A true superconducting transition in

high magnetic field is almost always due to disorder, and,
unless the disorder is strong, it will be much below the
freezing transition discussed here [5]. Finally, the weak
interlayer coupling in HTS and similar systems acts to
"lock-in" density waves from different layers resulting
in a 3D-ordered weakly modulated structure. The first
order character of the transition will be enhanced. The
change in the transition temperature will be rather small
and can be readily estimated [8]. While we have used
the numerical results as an input to our theory, it is not
necessary to do so. Large-order perturbation expansion
results for the structure factor of [P(r)~ [20] could have
been used instead so that the theory is kept entirely at the
analytic level.
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Lucile Packard Foundation. We thank Professor M. O.
Robbins for useful discussions in the early stage of this
work.

Note added. —Recently Sasik and Stroud [Phys. Rev. 8
49, 16074 (1994)] have evaluated numerically the discon-
tinuity in the shear modulus, p, , at the transition. They
find p, = 0.96 in units in which p, Kra HNv = ~3. Our the-
ory gives p, = 1.6 +. 0.7. The error bounds reflect uncer-
tainty in the curvature of the numerical structure factor at
its first two peaks [15].
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