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Vortex Lattice Melting in 2D Superconductors and Josephson Arrays
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Simulations of 2D vortex lattice melting in superconducting films are performed in the London
limit. A detailed finite size scaling test of the theory of dislocation mediated melting in 2D indicates
a weakly first order transition, and no hexatic liquid phase. However, the shear modulus vanishes
discontinuously at melting, with a value in good agreement with this theory.

PACS numbers: 74.60.Ge, 64.60.—i, 74.50.+r, 74.76.—w

Interest in the melting of two dimensional (2D) vortex
lattices has revived recently due to the belief that the
strongly fluctuating, layered, high-T, superconductors
may behave 2D-like in sufficiently large magnetic fields

[1]. This 2D melting transition has generally been be-
lieved to be described by the Kosterlitz-Thouless-Nelson-
Halperin-Young (KTNHY) theory [2—4] of dislocation
mediated melting. However, the very existence of a 2D
vortex lattice at any finite T has been recently questioned

by Moore [5]. High order, high T perturbative expansions

[6] similarly show no evidence for freezing into a vortex
lattice in 2D. Several Monte Carlo (MC) simulations [7],
however, find clear evidence for melting at a finite T
Hu and MacDonald [7] find this transition to be first or-

der, in opposition to the KTNHY theory.
The above cited simulations have all been performed

in the "lowest Landau level" approximation, in which
the complex order parameter Q(r) is expanded in the
eigenstates of the Gaussian part of the Landau-Ginzburg
free-energy functional. Alternatively, one may use the
London approximation, in which ]Q(r)] is assumed con-
stant and only the phase of @fluctuates. In this limit, the
problem can be efficiently simulated via the well known

mapping [8] onto the 2D Coulomb gas. Logarithmically
interacting point charges model vortices in the phase of
Q(r). For a uniform magnetic field B, one has a fixed
density B/C p of positive integer charges on a uniform
neutralizing background (Cp is the fiux quantum). The
London approximation should be valid whenever the bare
vortex core radius (p ((a„,the average spacing between
vvrcRes; Zdrs corresponas to cemperaCures weCC 6eCow

the mean field transition temperature, where vortex lat-
tice melting is expected to occur. Earlier simulations of
this 2D Coulomb gas [9] show evidence for a finite Tm
and suggest that melting is weakly first order. Here we
report on new simulations in this London approximation,
in which we carry out the first finite size scaling analysis
of the melting transition, making a detailed comparison
with the KTNHY theory. We show that the shear modu-
lus jumps discontinuously to zero at T with a value very
close to the KTNHY prediction; however, we find no evi-
dence for a hexatic liquid phase. We test the order of the
melting transition by using the histogram method, and
find that it is weakly first order, consistent with earlier
suggestions.

The model we simulate is given by the Hamiltonian

where we have discretized the continuum to the sites i
of a periodic triangular grid with spacing ap and length
Lap. n, = 0, or +1, is the point charge (vortic-
ity) at site i. The neutralizing background charge is

f = (+3ap2/2)(B/Cp) = (ap/a„)a, and V(r) is the lat-
tice Coulomb potential in 2D, which solves

6 V(r) = —2n6, p (2)

subject to periodic boundary conditions. b,z is the dis-
crete Laplacian. To keep the total energy finite, one
must require charge neutrality, i.e., the number of point
charges N, = P, n; = N f, where N = 1,2. Thus f is the
density of point charges. Further details may be found
in Ref. [10]. We always choose f commensurate with

L, so that the ground state will be a perfect triangu-
lar charge (vortex) lattice. The connection between Eq.
(1) and a superconductor is obtained by measuring the
Coulomb gas temperature in units of Cpzd/8vrzA2, where
A is the magnetic penetration length and d the film thick-
ness [3,8].

We study charge densities f = 1/m~, with m = 3
to 12, and fixed N, —100. Detailed finite size scaling
analysis is done for the specific case of f = 1/49 and
N, = 16, 25, . . . , 169. Our MC updating scheme is as fol-

lows. A charge is selected at random and moved to a site
witfiin a radius a„/2. This excitation is then accepted
or rejected using the standard Metropolis algorithm. We
call N, such attempts one MC sweep. At low T, we also
make global moves by attempting to shift entire rows
of charges by one space. Such shearing excitations help
to accelerate equilibration near melting. Data are col-
lected by heating from the ground state. At each T we
discard 30000 MC sweeps to equilibrate. Then, start-
ing from this equilibrated configuration, we perform 4—6
independent runs of 100000 sweeps each to compute av-
erages. Errors are estimated from the standard deviation
of these independent runs. To verify the consistency of
our results, we have also cooled from a random configu-
ration; no substantial hysteresis is found.

The physical quantities we measure are as follows: (i)
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The inverse dielectric function,

(T) = lim 1 —
q (nkvd g)jk~O

where nk = P,. n, exp( —ik r, ). The vanishing of e

upon heating signals an "insulator-conductor" transition
in the Coulomb gas. As ~ can be mapped onto the
helicity modulus of the superconductor [ll], its vanishing
signals the loss of superconducting phase coherence. We
approximate the k ~ 0 limit by averaging e ~ over the
three smallest wave vectors. (ii) The sixfold orientational
order correlation,

Vs(T) = »).(e*"' "')1

U

(4)

where the sum is only over sites with charges n, = +1,
and 8, is the angle of the bond from n, to its nearest
neighbor, relative to a fixed direction. (iii) The structure
function,

1 1
S(k) —= (nkn k) = ) e'"'(" ')(n, n, ).'

U

In Fig. 1, we plot e i(T) and &ps(T), versus T, for

f = 1/49 and N, = 169. The behavior of ps(T) indicates
two separate transitions at T,(f) and T . For a simple
visualization of the resulting three phases, we show in
Fig. 2 intensity plots of S(k), for k's in the first Bril-
louin zone (BZ). We show results for three different val-

ues of T, with the data for each T restricted to one-third
of the BZ. For T = 0.003 [Fig. 2(a)], just below T,(f),
we see a regular array of sharp Bragg peaks, indicat-
ing long range translational order. Thus for T & T,(f),
the vortex lattice is pinned to the discretizing grid. For
T = 0.0065 [Fig. 2(b)], just below T, we see a regular
array of peaks, but the peaks now have finite width con-
sistent with the power law singularities characteristic of
the algebraic translational order expected for a 2D lattice
in the continuum. Thus for T,(f) & T & T, we have a
"floating" vortex lattice which is depinned from the grid.

For T = 0.0075 [Fig. 2(c)], slightly above T~, we see a
rotationally invariant structure (ps 0), typical for a
liquid.

Returning to Fig. 1, we see that e vanishes at the
depinning transition T,(f); the fioating lattice has lost
superconducting phase coherence. This just reflects the
fiux fiow resistance to be expected from an unpinned vor-
tex lattice, which is free to drift transversely to an applied
dc current. Our results explicitly show that the absence
of phase coherence in this k ~ 0 sense does not not imply
the absence of a well defined vortex lattice.

In the inset to Fig. 1, we show the dependence of
T,(f) and T on the charge density f On. ly for suffi-
ciently dilute systems, f & 1/25, is there a fioating lat-
tice phase; for f ) 1/25 there is a single transition from
a pinned lattice to a liquid. As f decreases, T,(f) ~
f —+ 0, while T~ quickly approaches a finite constant
T = 0.0070 + 0.0005, in good agreement with the melt-
ing temperature found in earlier continuum simulations
[9]. In terms of the superconductor, this means a vortex
lattice melting at Tm = 0.00704ozd/8n A, well within
the bounds estimated by Fisher [3] from the KTNHY
theory.

The transition at T,(f) is an artifact of our discretiz-
ing the continuum; the limit of a uniform film is given by

f —+ 0, and, since T,(f ~ 0) ~ 0, the pinned phase dis-
appears. However, for the related problem of a periodic
superconducting network such as a Josephson junction
array [12], our discretization of space in Eq. (1) repre-
sents the discrete physical structure of the network. f
is the number of vortices per unit cell of the network,
and the sites t' in Eq. (1) are those of the dual lattice
of the periodic network. In this case T,(f) represents a
physical depinning transition. For T & T,(f), the vor-
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FIG. 1. Inverse dielectric function e (T) and orientatioual
correlation &ps(T) versus T for f = 1/49, N, = 169. Inset
showers the dependence of the transitions T, and T on charge
density f Solid and dashed line. s are guides to the eye only.

(a) (c)
FIG. 2. Structure function S(k) in the first Brillouin zone

(BZ) for f = 1/49, N, = 63, for three values of T. Data for
each T are restricted to one third of the BZ. (a) T = 0.003,
just below T„in the "pinned Iattice" state. (b) T = 0.0065,
just below T, in the "floating lattice" state. (c) T = 0.0075,
just above T, in the liquid. Intensities are plotted nonlin-
early to enhance features.
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S(G) ~ L "o for T & T~. (6)

Above T, translational order has exponential decay
with a correlation length (. One then obtains

S(G) ( for T &T . (7)

tex lattice is pinned to the periodic network and a true
superconducting state exists. For T,(f) & T & T~, the
vortex lattice is depinned; any applied dc current, no
matter how small, will result in a finite linear "flux flow"

resistivity. Our result that T,(f) ~ 0 as f —+ 0 is consis-
tent with early commensurability arguments for arrays
by Teitel and Jayaprakash [13].

To investigate the nature of the melting transition
T, we consider in detail the case f = 1/49, for which
T is well separated from T,. Our approach is guided

by the KTNHY theory [2]. For a 2D lattice in the
continuum, translational correlations decay algebraically
with a temperature dependent exponent, (e'G'&" 'il) ~
~ri —r„.

~

"o~Tl, where G is a reciprocal lattice vec-
tor of the real space charge lattice. For a 2D super-
conductor, where the vortex compressibility is infinite,

Ilo(T) = k~T ~G~2/4' p, where p is the vortex shear mod-
ulus. If Gq is the shortest reciprocal lattice vector, then
the KTNHY theory predicts that at T~, rlG, takes a dis-
continuous jump to infinity from the universal value of
Ilo, (T ) = 1/3.

To test this prediction, we measure the height of peaks
in S(k). From Eq. (5), these scale as

((sl'
2irni —

i
+(ps .«r (8)

Above T, KTNHY predict a hexatic liquid phase, with
algebraic orientational order (e' Is~"l e~ ll) r "'~ l

with Ils(T) & 1/4. In such a case, one would have

scale, for several different T. The data fall on straight
lines, confirming the expected power-law behavior. These
straight lines fall into three distinct groups. For T (T,
0.0045, S(Gi)/L 1, indicating the long range order
of the pinned lattice. For T, ( T ( T~ = 0.007, we find
algebraic decay, S(Gi)/L2 L "o~+l. For T & T~, we

find S(Gi)/L2 L *, with z ~ 2 as T increases, con-
sistent with the short range order of a liquid. The lines
in Fig. 3(a) are a fit by Eq. (6); the resulting exponents
Ilo, (T) are shown in Table I. We see that riG, first ex-
ceeds the KTNHY universal value of 1/3 at T = 0;0065,
very close to our estimated T 0.007, where the slopes
of the lines in Fig. 3(a) show an apparent discontinuous
jump. Similar results have very recently been obtained
within the lowest Landau level approximation [14].

As a consistency check, we have also computed S(Gq),
where G2 ——2Gi. Using similar fits as in Fig. 3(a), we
show our results for Ilo, in Table I. We see that Ilo,
4riG, as expected, since rl~ ~G~2.

We now consider the orientational order. Below T~,
KTNHY predict long range sixfold orientational order
given by (e' I ~"l sl l&) ~ ere "~~' + yp. For (s && L,
one obtains from Eq. (4)

In Fig. 3(a) we plot S(Gi)/L versus L on a log-log (9)
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At higher T, KTNHY predict an isotropic liquid, with
short ranged orientational order. In this case, Eq. (8)
again holds, but with ys = 0 [15]. In Fig. 3(b) we
display &ps(T) versus L for various T. In the floating solid
below T~ we find that ys(T) saturates to a finite value
as L increases, indicating long range order. Solid lines
represent a least square fits to Eq. (8), and the extracted
values of ys are shown in Table I. Above T~, we try
fits to both Eqs. (8) and (9); we find that Eq. (8) always
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FIG. 3. (a) Finite size scaling of S(Gi)/L (note the
log-log scale). Solid and dashed lines are fits by Eq. (6). (b)
Finite size scaling of &p6(T). Solid and dashed lines are fits by
Eq. (8).
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T
0.00475
0.00500
0.00525
0.00550
0.00575
0.00600
0.00625
0.00650
0.00675
0.00750
0.01100
0.01500

il@, (T)
0.188+0.008
0.207+0.007
0.211+0.007
0.248+0.005
0.255+0.008
0.296+0.006
0.319+0.010

0.4+0.16
1.4+0.31
3.4+0.37
2.8+0.23
2.2+0.12

no. (T)
0.704+0.055
0.806+0.032
0.852+0.028
0.998+0.019
0.999+0.029
1.065+0.028
1.191+0.016

1.4+0.22
2.0+0.31
3.4+0.44
2.9+0.30
2.1+0.22

We

0.571+0.007
0.529+0.005
0.504+0.004
0.476+0.003
0.458+0.003
0.426+0.007
0.403+0.004
0.33+0.030
0.20+0.041
0.03+0.046

-0.01+0.032
0.00+0.020

TABLE I. Temperature dependence of iso, (T), iso, (T),
and &p6 [see Eqs. (6) and (8)].
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gives the superior fit, with yP 0. Thus we find no
evidence for a hexatic liquid above T

The absence of the hexatic liquid suggests that the
melting transition may not be of the KTNHY type, but
is perhaps weakly first order as found by Hu and Mac-
Donald [7], and as suggested in Ref. [9]. To exam-
ine this possibility, we measured the energy distribution
P(E) e F(@ii+ at T~ [16], and in Fig. 4 we plot the
resulting free energy F(E) versus E. We see a double
well structure with an energy barrier AF between two
coexisting phases. In the inset to Fig. 4 we show b,F
versus L. The growth in AF as L increases signals a first
order transition, although our sizes remain too small and
our data too noisy, to see clearly the predicted scaling
b,F L. To determine the distributions in Fig. 4, we
have computed P(E) at fixed T T, and then extrap-
olated [17] to determine P(E) at nearby T, finding the
precise value of T that gives equal minima in F(E). In
this way we obtain an improved estimate T 0.0066.

To conclude, our results clearly establish the melting
of the 2D vortex lattice, within the London approxima-
tion, at a finite T~. This transition is first order, with
melting directly into an isotropic vortex liquid; no hex-
atic liquid is found. The first order transition, however,
is very weak, so that the jump in ri~ at melting (and
hence in the vortex shear modulus p) remains very close
to the KTNHY universal prediction.
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FIG. 4. Free energy F(E) versus E, at T, for several sizes

L. The growth in energy barrier bF with increasing L (see
inset) indicates a first order transition. Curves for different L
are offset from each other for clarity.
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