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We study a system of fermions interacting with a gauge field which can be used to describe
either a spin liquid or the v = 1/2 quantum Hall state. We propose a generalized model with a
dimensionless parameter N. We evaluate the properties of the model in both limits N > 1 and
N <« 1 and deduce the properties of the model in the most physically interesting case of N = 1, 2.
At N < 1 the motion of the fermions becomes one dimensional. By applying the bosonization
method in this limit, we obtain the fermion Green function and response functions.

PACS numbers: 73.40.Hm

Recently the problem of two dimensional (2D) fermions
interacting with a gauge field has become a subject of ex-
tensive research. The low energy behavior of this model
is often believed to describe the properties of two strongly
interacting electron systems: the normal state of the high
T. cuprates [1-3] and the v = 1/2 state in the quantum
Hall (QH) effect [4,5]. We begin by formulating the prob-
lem, then we describe our results, and finally we sketch
their derivation.

The localized spins in high T, are assumed to form a
gapless spin liquid [6] which does not break any symmetry
[the so-called resonating valence bond (RVB) state]. It
is convenient to describe the excitations of this state in
terms of chargeless fermions with spin 1/2 (spinons): S =
fgaga fa, where f, is the fermion destruction operator
[1]. To ensure that each site is occupied by one and
only one spin, it is necessary to couple these fermions
to the gauge field. Formally, this gauge field appears
after a Hubbard-Stratanovich decoupling of the spin-spin
interaction [1,2]: H =3_S;-S;.

The 2D electron gas in the QH regime acquires very
special properties in the vicinity of the filling factor
v = 1/2. Attaching two flux quanta to each electron, one
maps this problem onto the problem of fermions interact-
ing with a fluctuating “magnetic” field of zero average at
v =1/2 [4,5]. Neglecting these fluctuations, one ends up
with a gapless Fermi liquid. The experimentally observed
nonzero conductivity [7] around v = 1/2 means that this
Fermi liquid is a reasonable starting point. To complete
the theory one must take into account the fluctuations of
the gauge field.

Both problems can be reduced to the Hamiltonian

1
H= —%f;(V—ia)2fa+§(an)2, (1)

where a is a transverse vector potential (V -a = 0),
o =1,...,N. For the spin polarized QH state N = 1,
whereas for the RVB state N = 2, corresponding to two
possible spin polarizations. The Hamiltonian (1) cor-
rectly describes only low energy modes: fermions in the
vicinity of the Fermi line and transverse gauge field. The
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high energy modes (fermions deep in the Fermi sea, lon-
gitudinal gauge field) were already integrated out in (1)
resulting in the stiffness of the gauge field [last term in
(1)] and the fermion mass renormalization. The interac-
tion mediated by the longitudinal gauge field is screened
and becomes short ranged, so it can be omitted from
the Hamiltonian (1). In the case of the QH effect, there
is also a coupling between transverse and longitudinal
gauge fields which gives an additional contribution to x.

The main difficulty associated with (1) is the singu-
larity of the interaction mediated by the gauge field at
low energy w and momentum k transfer. Fermions near
the Fermi line result in a Landau damping [8] (x |w|/k),
leading to an overdamped dynamics of the gauge field
described by the correlator [2] (ana. )k Which we write
in Matsubara (Euclidean) formalism:

5. _ kuke

_ _ 2 _ w E
(Butubiss = (B = bk [N ) = g vt
(2)

Here po is the inverse curvature of the Fermi line. For
a noncircular Fermi line py varies along the Fermi line.
In this case one has to evaluate the curvature at a point
where the tangent to the Fermi line is parallel to k.

The model (1) has been discussed repeatedly in the
framework of 1/N expansion [2,3,9-12]. At finite temper-
atures the static part of gauge field fluctuations [w = 0
in (2)] dominates {10]; i.e., the contributions from w # 0
fields are small in 1/N. The Green’s function of the
fermions evaluated in a static approximation shows that
coherence effects are suppressed by magnetic field fluc-
tuations; as a result, the particle moves semiclassically:
for large times only a small region around the classical
trajectory determines the Green'’s function.

The relevance of 1/N expansion for the interesting
cases of N = 1,2 was questioned in [12]. Here we shall
consider the behavior of the model in both limits N — oo
and N — 0 and discuss the implications for N = 1,2 [13].
The limit N — 0 is realized in the generalized model with
M species of photons. Such a model may describe a spin
liquid with M sublattices. Since in this model the ef-
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fective correlator (2) is multiplied by M, it can also be
described by Egs. (1) and (2) with modified parameters:
N = N/M, X = x/M. In the following we shall drop the
tildes and study the model for general values of N and
X- As will be clear below, the value of the stiffness x sets
the relevant length scale lg,

0% .
m2pox2N

-1

b= (3\1/3)3

At shorter scales the effects of gauge interaction are not
important, whereas the qualitative behavior at larger
scales is governed by the value of N.

At N > 1 the static approximation is valid at any tem-
perature T. At N < 1 the fermion motion becomes qual-
itatively different: it is strongly nonclassical and even
more one dimensional. In this limit the fermion Green’s
function is given by a 1+1 dimensional integral:

®3)

G(p,€) = / G(z, t)eet—HIPI=PP)z gy 4oy, (4)

i —I(2/3)l5 %z
27 (x — qvpt) P (nz; - isgn(;)thP/‘*) '

Clearly, the fermion density of states p = Im [ G(0,t)x
e**tdt remains the same as for noninteracting fermions.
At the same time, the probability to move along the clas-
sical path £ = vpt decays exponentially; the particle is
smeared over a distance r  t2/3 and the velocity of the
wave packet vanishes at ¢t — co. Therefore, due to gauge
field fluctuations, a single fermion cannot propagate.
However, a particle-hole pair (which is neutral with
respect to the gauge field) propagates if the momentum

N 1/3
of the relative motion is small: k¥ <« k, = (—‘;’(ﬂ’-) .

In this case the absorption (the imaginary part of the
fermion density correlator) at k < k,, remains the same
as in the noninteracting Fermi gas, ImR(w, k) o< w/|k|.

The particles with large relative velocities become es-
sentially independent and propagate poorly. This effect
suppresses the absorption at large wave vectors k > k,;
we estimate it as ImR(w, ¢) < w(prlo).

Increasing N results in a crossover to the state where
static fluctuations of the gauge field dominate at finite
temperatures. At T = 0 the most important effect of
the 1/N corrections is the anomalous power law behavior

G(z,t) =

|

A(wy,wz)(dwdwadk 1dk) 2)

a b
p+k
<= +
p
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FIG. 1. Typical high order diagrams. (a) Simplest high
order diagram for the self-energy with crossings. (b) Loop
insertion in the gauge field line that should be excluded from
1D theory. (c¢) At N < 1 only ladder diagrams are important
for vertex renormalization. k = 0 corresponds to vertex I'p;
k = 2pr corresponds to vertex I'p. Filled triangle denotes
renormalized vertices I'p, I'p.

of the density (and spin) correlators at k = 2pr and
the backward scattering amplitudes; these exponents are
proportional to 1/N. The power laws cross over to an
exponential behavior at N — 0.

Now we sketch the derivation of these results. To the
first order in the interaction with the gauge field the
Green’s function is GM=1(¢,p) = ie — vr(|p| — pr) —
M (e),

2(1)(6) — U%‘/ : : D(W,k)da)d2k
i(e+iw) —vr(lp+ k| — pr)

€ (5)

For the idea of the derivation see [3,14].

At N > 1 diagrams with crossings are negligible. Con-
sider, e.g., the diagram for the self-energy shown in Fig.
1(a). To evaluate it we introduce the components kj
(kL) of the momenta k parallel (perpendicular) to p.
The product of the three Green’s functions in (10) de-
creases rapidly at vrkj > ¥(e), so the main contribution
to (10) comes from the range of small [k < l5(5)¥?]
momenta. Both G and D decrease only when k; 2 ke,
so the main contribution to (10) comes from the range
ki S ke~ ky (%*1)1/3 > kj. Neglecting the k; depen-
dence of the gauge field propagator we get

@ (e) = vk

In the limit NV > 1 we find

A2(wy,ws) — k2 k2, /m? D(w1,k11)D(we, ky2), ©6)
A(wl,w2) = 'UF(pF _P) + ’L(‘,_)é/a(lE +LU1 +w2|2/3 + |6 +(J.)1I2/3 + |€ +w2|2/3). (7)
(8)

2 1/3
$@ = 0 (M) P )ﬂ\ . c~2.16.
€

4N
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Note that the ratio of £(?) /£ is governed only by N,
and that at N > 1, £ « £ This smallness can be
traced back to the term k2 k%, in the denominator of
(6) caused by the crossing in this diagram.

Since each crossing results in an additional factor
1/N?, only the diagrams with the minimal numbers of
crossings are important at N > 1. From the theory of lo-
calization such diagrams are known to include the ladder-
like pieces in particle-hole and particle-particle channels
and lead to potentially dangerous singularities. These
diagrams make 1/N expansion subtle: to find the sub-
leading terms one cannot consider only one diagram with
single crossings but needs to renormalize vertices by the
whole ladder series. The details of such calculations
will be presented elsewhere [15]; here we only summa-
rize their conclusions: (i) the self-energy preserves its
form at p = pr and allows expansion in series of 1/N:
Y(e,p = pr) = f(1/N)e|wo/e|*/3, but it acquires some
momentum dependence in higher orders of 1/N expan-
sion; (ii) 1/N corrections for polarization bubble become
very small (x |w| in the infrared limit), and can be com-
pletely neglected.

The vertex parts at the momentum transfer 2pr are
more interesting. Their anomalous energy dependence
determines the dependence of spin and density correla-
tors. The first order correction is proportional to Ine
[9]. The series of logarithms can be summed similarly to
the derivation of doubly logarithmic asymptotics in quan-
tum electrodynamics [16]; at small energies and momenta
close to 2pp the vertex has a power law singularity:

Dp(e,295) ~ (|—F)’m Tp(0,k) ~ (“cl’_’—*"zpp)m
)

Now we turn to the limit N — 0. We can neglect
the dependence of the fermionic Green’s function on the
transverse momenta even in higher order diagrams with
crossings; e.g., we can neglect the term k2 k%, in the
denominator of (7) for the diagram in Fig. 1(a). Then
k. enters only via D(w, k); integrals over them factorize
and can be performed independently for each gauge field
propagator. The resulting expression for the self-energy
diagrams takes a form of integrals over k and w; e.g.,
the diagram shown in Fig. 1(a) is

Efoz)(f)=/G(l)(e+w1,p+k1)G(1)(6+wz,p+kz)

x G (e+wy+wa, p+k1+k2) D(wr)

x D(w2)(dw;dwydkydks). (10)
Here
=~ VFg
D(w) = i/ (11)

is the new propagator governed by the interaction param-

eter g = 4Tw}/®. Note that due to the infrared singular-
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ity of the gauge field propagator the main contribution
to the self-energy comes from the interaction between
fermions that move almost in the same direction. Thus,
we can consider only fermions on a small patch of the
Fermi surface around momentum p. The absence of p;
dependence of the Fermi Green’s functions implies that
motion in this patch is essentially one dimensional. More-
over, similar arguments applied to higher order diagrams
show that the whole series of diagrams coincides, order
by order, with a perturbative expansion of the 1D theory
with the action

2
S= / (\If‘iw,_k(iw — vpk) TS + ”—F’ZIILI%’EL) dk dw,
(12)
where py , = ¥¢ U¢ _ is the density operator.

The diagrams with Fermi loops [e.g., in Fig. 1(b)] are
already taken into account in the gauge field propagator
(2). As we show below, the higher order insertions in the
loop of the Fermi field do not change the propagator (2)
at typical w and k. However, a perturbative treatment
of model (12) generates the loops. To get rid of them we
use the replica trick—take the limit of zero number of
components of the Fermi field: a =1,...,s, s — 0.

Finally, the retarded interaction between the fermions
provides a natural cutoff (wp) of the ultraviolet divergen-
cies: regularization of the 1D theory in the time direction
is more natural here than the conventional regularization
in the space direction.

The 1D model (12) can be solved by bosonization [17].
As usual, we introduce the Bose field ¢ with the action
quadratic in Bose fields

S5 =3 / (@2 + k3(00)? + LI/ 20ags ) dw dk. (13)

This allows us to evaluate the Green’s function:

Fun(w,K) = (Butn) = —rzbun = =22 (14
ab\W, = \PaPb) = w2 + k2 ab 7r(w2+k2)2'
The original fermions are related to the Bose field by
1
U= o exp VA6 +i9), (15)

where ¢* is the dual field: 0;¢* = 9,¢ and a ~ vp/wp.
All correlators of the original Fermi fields are reduced to
the Gaussian integrals over the Bose fields. Evaluating
these integrals we get the fermion Green’s function (4).
The main contribution to the absorption at small mo-
menta k < k, comes from fermion hole pairs close to
the Fermi surface with vpk| ~ X(w) and perpendicu-
lar k; = k < k,,. The momentum perpendicular to p
can be ignored and the interaction between fermion and
hole can be described within the 1D theory. Effects of
the interaction cancel exactly in the density correlator
(pp) = ((¥oTp)(TpT,)): the absorption at these wave
vectors is exactly the same as for noninteracting fermions.
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This also proves that the interaction does not renormal-
ize D(w, k) in the important range of w and k. Thus,
we have shown that the gauge field propagator (2) is not
renormalized in both limits N > 1 and N < 1, so we
conjecture that it is not renormalized for any N.

Straightforward analysis [15] shows that fermions with
a large angle between their momenta interact weakly.
The angle close to m makes an important exception be-
cause the gauge field leads to a strong interaction be-
tween fermions moving in almost opposite directions,
i.e., fermions on two small patches of the Fermi surface
around momenta p and —p. Repeating the arguments
that led us to a 1D action (12) we see that the effect
of the gauge field on the scattering by angle 7 can be
similarly described in the framework of 1D theory which
contains both right and left movers. Moreover, it can
be described in the framework of the same bosonization
scheme characterized by the action (13): from the Bose
fields we may construct left and right moving fermions
Uy R\/_zl—n_z exp /m(¢* £ i¢) representing fermions before
and after collision. As before, one can check that this
1D theory reproduces correctly all terms in the diagram-
matic expansion for the original fermions.

The effect of the interaction between fermions moving
with opposite momenta is revealed in its effect on the
scattering amplitude of the fermion by impurity with mo-
mentum transfer 2pp. The backward scattering is known
to be renormalized to infinity in a case of a Luttinger lig-
uid with repulsion [18]. In a 1D model (12) the enhance-
ment is much stronger than in a canonical Luttinger lig-
uid discussed in [18]; namely, the bosonization approach
gives the backscattering probability

3
-1 (0)-1 g
TB T exp (—-27r|w|1/3) ,

(16)
where 1/7(9 is the backscattering probability of free elec-
trons. The difference from the Luttinger liquid originates
from the power singularity in (12). The exponentially
large amplitude of the backscattering is due to a can-
cellation of the diagrams in the 1D theory which follows
from a generalized Ward identity [19]. This cancellation
is exact only at N — 0, so we expect that the result (16)
crosses over to a power law behavior (9) at finite N with
an exponent that tends to infinity when N — 0.

We believe that the effect of backscattering enhance-
ment was observed experimentally in [20] where it was
found that for ¥ = 1/2 the transport relaxation rate is
about 2 orders of magnitude larger than in the state with-
out magnetic field while the total relaxation rate (deter-
mined from Shubnikov-de Haas oscillations) remained of
the same order. With no magnetic field the total scat-
tering rate was much larger than the transport rate, im-
plying a very small probability of backscattering. This
probability can be dramatically enhanced by the mecha-

nism we have proposed in this paper.

When the magnetic field varies away from v = 1/2, the
fermions see an incremental uniform field; its influence on
the dimension reduction is still an open question.

In conclusion, we have shown that two dimensional
fermions interacting with a gauge field may exhibit one
dimensional behavior. This conclusion seems consistent
with a qualitative picture proposed by Anderson [21].
This approach may lead to the quantitative description
of both the RVB and v = 1/2 states.
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