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Collapse of Quantized Conductance in a Dirty Tomonaga-Luttinger Liquid
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The way the quantized value of conductance in a quantum wire disappears is predicted as a function
of temperature and length of the wire by taking account of both impurity scattering and mutual Coulomb
interactions, i.e., in the case of a dirty Tomonaga-Luttinger liquid. It is sho~n that quantization ot
conductance is realized for short wires, while for longer wires the effect of impurity scattering is
important and a deviation from the quantized value becomes apparent especially at low temperatures.
In this case the conductance shows a distinctive temperature dependence.
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Recent progress in nanostructure technology has stimu-
lated studies of quantum transport in mesoscopic systems
[1]. One of the most remarkable phenomena is the ob-
servation of quantization of conductance through a point
contact, which reAects the number of active channels [2—
4]. This quantization, however, is not robust but appears
to be sensitive to the parameters of actual experiments;
sometimes it gives away for cases with small carrier den-

sity (i.e., for low gate voltages) [5]. Recently it has
become possible to study the size dependence of conduc-
tance for a fairly large variety of parameters [6,7]. The
system length and the mean free path can be roughly of
the same order of magnitude. In such situations, an inter-

esting size dependence is expected.
In this paper we study the way this collapse of the

quantization of conductance is described as a function of
temperature and length of the system. We consider the
case of a single channel in a quantum wire with both
impurity scattering and mutual Coulomb interaction, i.e.,
the case of a dirty Tomonaga-Luttinger liquid [8] in a finite

system. We confine ourselves to the case of static (to = 0)
Ohmic conductance. In this case the conductance g is

given as g = cr/L for the one-dimensional case, where o.

is the static Ohmic conductivity and L is the length of the

system. For the discussion of quantization of conductance,

g is usually evaluated by use of the Landauer formula [9].
First of all, the conductance per channel in the presence of
mutual interaction becomes [10]

2

g= Kp, ]I 1)

where K~ is a correlation exponent [11]which is related to
the interaction strength. K~ = 1 for noninteracting elec-
trons; when the interaction is repulsive K~ ~ 1, and when
it is attractive K~ ~ 1, respectively. For the repulsive

1 1

Hubbard model we have 2 K~ 1, especially K~
toward half filling, which is a direct consequence of the

spin-charge separation near the Mott insulator.
The exponent K~ shows up in (1) because the current-

density operator in the Tomonaga-Luttinger liquid is

strongly renormalized by the interaction [8]. It is to
be noted here that, as far as the Tomonaga-Luttingcr

liquid is realized, quantized conductance (1) is obtained
[10, 12]. On the contrary, in point contacts, electrons
pass through the contact before they feel the mutual

interactions. In this case conductance will be quantized
at g = e '/mh. R-oughly speaking we expect a crossover
from g = e-K~/trh to g = e2/trh when the system size
is very short and 27r/L ) kF, where the discreteness of
the energy levels invalidates the bosonization. In this

paper we do not consider the case of point contacts but

study the case of the quantum wires whose lengths are
sufficient to make the system the Tomonaga-Luttinger
liquid,

The effect of a single impurity on (1) has been dis-
cussed [12, 13]. In such calculations, however, the

thermodynamic length of the one-dimensional system is

implicitly assumed and the impurity density is n; == 1/L.
On the other hand, in actual experimental situations
which wc are interested in, the characteristic length of the

potential fluctuation can be much shorter than the system
size. In such cases, the effect of finite impurity density
is to be investigated. Apel and Rice [10] discussed the

conductance g in the presence of finite impurity density to
show that the impurity scattering is rcnormalized to strong

coupling for K~ & 2 and g goes to zero as temperature
decreases. Recently Fukuyama et al. [14] calculated
the explicit temperature dependence of conductivity in

the thermodynamic limit (L ~-). They obtained a
finite conductivity which means that the conductance

g is proportional to 1/L. Apparently this result (finite
conductivity) and the quantized conductance in Eq. (1)
(finite conductance) look incompatible at first glance.

In this paper we clarify the relation between them and
show that the collapse of the quantization is naturally
understood by the crossover between the two cases of the

quantized conductance and thc finite conductlvlty, by a
detailed study of the length and temperature dcpendcnccs
of the conductance. For short wires we expect finite

(quantized) conductance on one hand, and for longer
wires (and at finite temperatures) we will have a finite

conductivity or g = o/L ~ L ' on the o. ther hand. The
possibilities of an experimental check at an accessible
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evaluate 4(cu) as follows:
ne2Cd.
( +,e), for cu » vF/L,

@(~) =
i ~, for cu && vF/L.

(4a)

(4b)

FIG. l. A schematic geometry of a quantum wire in the
present study.

temperature and wire size are also discussed based on
experimentally available parameters.

Here we note that the Anderson localization becomes
important for samples with short mean free paths and at
low temperatures. In this paper, ho~ever, we examine
the conductance of relatively cleaner samples in the
temperature region where the localization effect does
not play an important role. The relation between the
present calculation and the Anderson localization will be
explicitly discussed in the following.

Our model is a quantum wire of length L and width
W which is connected to perfect leads on both sides, as
shown in Fig. 1. We assume that the carrier density n and
W are such that there exists only a single subband along
the wire (one-dimensional electrons). The electrons are
scattered by impurities and mutually interacting via long-
range Coulomb interaction, both of which play important
roles in actual systems. The Hamiltonian is

1
H = g e(k) ak, ak, + —g v (q)pq p q

+ g u(q) p(q),
k,s q q

(2)

where e(k) = h2k2/2m* and v (q) and u(q) are one-
dimensional Fourier transforms of the Coulomb interac-
tion and the random impurity potential, respectively. The
density operator of electrons, p(q), is defined as p(q) =
5, ak+, ak, . In Eq. (2) we ignored the electron-phonon
scattering since we are interested in the region of rela-
tively low temperatures.

First let us examine the noninteractinp case. In a clean
system o.(co) is given as o.(co) = (ice) [4'(cu) —4(0)],

'*".'„y~ j" d.G"(k, —„')
„( zX«G"

~
k, ——~ I, (3)

&
'h )'

where G"(k, cu) = [hcu —ek + ib] = [G"(k,~)] .
Taking account of the finite length of the system, we

As is well known, substitution of Eq. (4a) into (3)
gives the Drude conductivity, o = ne2/m'( ice —+ 8).
On the other hand, Eq. (4b) being valid in systems
with finite length leads to the quantized value of the
conductance of a noninteracting one-channel system, g =
e2/mh E. q.uation (4) indicates that a replacement i c—u

2vF/L is valid for systems with finite lengths and the
static limit. (Note that n = 2kF/m = 2m*vF/rrh. ) In
mesoscopic systems Eq. (4b), instead of (4a), is relevant
in the static limit. In the presence of mutual interaction
the extra factor K~ is present as in Eq. (1).

In the presence of both randomness and mutual inter-
action we evaluate the conductivity based on the Mori
formula [15, 16] which reads as follows:

ne2Kp 2vF 1
CT + (5)m* L

1 2 , (Be Be l——= n; gu'(k —k')
~

——
E Bk Bk')

ImN(k —k', cu)
X

F(T,L)
0

Ttx

where n; is the density of impurities and N(k, co) is the
density-density correlation function which takes full ac-
count of the mutual interactions. We have K~ in the nu-
merator of (5) for the same reason as in (1). In Eq. (6)
rt„/h = [2m.D(0) n;u ] is the transport relaxation time
for noninteracting electrons at absolute zero with u =
u(2kF) and D(0) = (2m hvF)

' is the half of density of
states per spin. Note that the conductivity (5) is obtained
from a usual Drude formula with the replacement i cu ~—
2vF/L. Usually in discussing the static conductivity, the
term —i co is neglected, but in the present case it is impor-
tant to keep this term, replacing it with the size-dependent
term. The Mori formula is seen to be very suited for ob-
serving the importance of this term. Equation (5) natu-
rally interpolates the quantization of conductance (1) for
small systems with 2vF/L » 1/r„, and the usual conduc-
tivity for longer systems with 2vF /L « 1/r„.

The quantity F(T,L) represents the effect of the im-
purity backward scattering. In the limit of a long wire
(L »hvF/AT), F(T,L) is simply related to the 2kF
component of density-density correlation function in the
thermodynamic limit, and will be denoted as F(T). If
the interaction is short ranged, it is well known that
N(2kF, co) has a power-law behavior as cu and T go to
zero in the Tomonaga-Luttinger liquid [8]. This gives
F(T) —(keT/cuF) ', where the temperature is normal-
ized by the cutoff frequency coF, which is of the order of
the Fermi energy. This temperature dependence is, how-
ever, a critical behavior only for k&T « coF. The global
temperature dependence has been calculated recently [14]
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for the realistic long-range Coulomb interactions, based
on the phase Hamiltonian [17—19]. In this case F(T) is
also a rapidly increasing function of T as the tempera-
ture decreases, which is consistent with (k&T/cuI;) ' for
K~ & 1. In the following we utilize the result for F(T)
obtained by Fukuyama, Kohno, and Shirasaki [20].

For the case of the short wires, or when L is comparable
with h, vF/k&T, we have to take account of the effect of
the finite length L. This effect is introduced in F(T)
by replacing the temperature T by (T2 + TL)~/2 where
kqTL =R&F/L, i.e., F(T, L) = F((T + TL)'/ ). Below
the temperature TL, where the thermal length becomes
longer than the system size, the divergence of F(T) as
T 0 is terminated and F(T, L) becomes T independent.

By Eqs. (5) and (6) we obtain the formula for the
conductance as

2e K 1 2e2Kp

h 1 + (L/2I)F(T, L) h

where 1 = vF ~„ is the elastic mean free path. The dimen-
sionless conductance, G(T, L) thus obtained is shown in

Fig. 2 for several choices of L/I and TL The tem. pera-
ture is normalized by the cutoff frequency cuI... Let us first
see the typical experimental values of relevant parame-
ters in the case of GaAs quantum wires, with n —2 &
10"/cm2 and W = 400 A as studied in Ref. [14]. The
Fermi velocity is vF —2 X 10 m/sec (m* = 0.067mo,
kF —1.2 X 10s m '), and then cuF —100 K. With these
values, L = 0.1 p, m (0.5, 2, and 10 p, m) corresponds to
TL —10 K (2, 0.6, and 0.1 K), respectively. The other
parameter L/I can be 10—0.03, where the low value is re-
alized in recent high-mobility samples [6] with I —67 pm
and L = 2 to 60 p, m.

From Fig. 2 one can see that the conductance has a quan-
tized value in the high temperature region where F(T, L) is
still small. However, as the temperature is lowered, the ef-
fect of impurity scattering becomes stronger [i.e., F(T, L)
becomes larger] and the quantization collapses. Of course
if the ratio L/I is small enough, the degree of the col-
lapse is small. On the other hand, if the ratio L/I is large,
the conductance is mainly determined from (L/2l)F(T, L).
A recent experiment on long wires [7] (L —20 p, m, I—
1 p, m) shows that the resistance [1/G(T, L)] increases as
the temperature is lowered and has a strong dependence
on T characterized by a power law, which is qualitatively
consistent with the behavior of F(T, L).

Here we remark on the effect of Anderson localization.
Formulas (6) and (7) are obtained by taking account of
the impurity effect up to second order perturbation. The
multiple impurity scattering effect which leads to the
Anderson localization at low temperatures is not taken
into account. The regime where this effect becomes
dominant will be for short mean free paths, L/I » 1, and
at low temperatures, T « vF/I = TLL/I In Fig. 2 we.
have indicated such regions where the effect of Anderson
localization is to be taken into account (mostly in the
lower left part of the figure). Apparently in such samples
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FIG. 2. The temperature dependences of the dimensionless
conductance, G(T, L), for several choices of L/I and T, =-

ur/L Each correspond. s to L = 10, 0.5, and 0.1 p, m, respec-
tively. The temperature is normalized by a cutoff frequency
cu&- —100 K and the crossover temperature TL is shown by an
arrow. The dashed lines indicate the region where the Ander-
son localization will play important roles.

the conductance quantization is already destroyed, which
is the region we are not interested in here. What we have
examined in this paper is the conductance in relatively
cleaner samples, ~here the quantized conductance and its

collapse at lower temperatures can be observed, In such
cleaner samples the Anderson localization starts at much
lower temperatures.

%e can see in Fig. 2 that the crossover temperature

TL also plays an important role. When T& is large.
F(T, L) stops increasing below the temperature T& and

remains small; as a result the quantization is more or less
maintained. This reflects the fact that, when the system
size is small, the Tomonaga-Luttinger liquid behavior is

suppressed at low temperatures because the long-distance
power-law behavior, which is essential for the Tomonaga-
Luttinger liquid behavior, is cut off by L.

In Fig. 3 we show the resistance, 1/G(T, L) =- 1 +
(L/21)F(T, L), as a function of the system size for several
choices of temperature. The deviation from the quantized
~alue is almost linear in L at high temperatures (for
example, T = 10 K). This is because F(T, L) is small at
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FIG. 3. The dimensionless resistance, 1/G(T, L), as a function
of the system size for several choices of temperature. A
parameter hv /F1 is chosen to be 0.1 K which corresponds to
l = 10 p,m. The resistance changes its behavior at a crossover
length (thermal length) at which T = TL, (see the text).

high temperatures and does not depend on L so much. As
the temperature is lowered and for a small size, the size
dependence of F(T, L) becomes apparent. In the region
of small L when TL ) T, F(T, L) gradually increases as L
increases, starting from a small value. Above a crossover
length at which T = TL, or Lr =IivF/k+T (i.e., the
thermal length), F(T, L) stops increasing and the deviation
from the quantized value becomes proportional to L again.
This crossover length is Lr/l = 0.01, 0.05, 0.1, and 1

for T = 10, 2, 1, and 0.1 K, respectively. The size
dependence of the resistance observed experimentally [6]
is in accordance with this behavior, but more experimental
studies are needed to make a detailed comparison [21].

Recently Anderson has suggested that the spin-
charge separation in the Tomonaga-Luttinger liquid
leads to the linear-T resistivity [22]. In that case,
instead of the replacement i to ~ 2vF—/L, we have

ito (v, ——v, )ksT/IivF [23]. It is argued, however,
that at low temperatures the Anderson localization domi-
nates and the linear-T behavior disappears. At higher
temperatures, on the other hand, it will be possible to
realize the linear-T resistivity if there are some relaxa-
tion processes for spinons and holons, although the
mechanism of relaxation is not yet clarified. In our
formalism, we have not taken into account such an effect
and instead employed the conventional Kubo formula and
the density-density correlation function derived in the
thermodynamic limit of the Tomonaga-Luttinger liquid.

In summary we have seen that the conductance gets
suppressed below the quantized value for various values
of L/l and at low temperatures as a consequence of the
combined effects of randomness and mutual Coulomb
interactions. Several experiments already report such a
tendency of the suppression of the conductance at low
gate voltage [5—7] but to our knowledge there are not
yet systematic investigations of their dependences on
the temperature and length of the system, which are of
considerable interest.
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