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Absence of Localization in a Nonlinear Random Binary Alloy
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We investigate electronic propagation in a one-dimensional nonlinear random binary alloy modeled

by a discrete nonlinear Schrédinger equation.

We find absence of electronic localization except for

large nonlinearity parameter values. The presence of disorder is completely overcome by the nonlinear
terms leading to ballistic propagation of the untrapped electronic fraction. The existence of disorder
in the model is manifested in the power-law decay of the transmissivity of plane waves through the

medium as a function of the system size.

PACS numbers: 71.55.Jv, 72.15.Rn

The theory of Anderson localization predicts that the
wave function of a free electron moving in a one-
dimensional lattice with on-site energetic disorder is local-
ized even for an infinitesimal amount of disorder [1]. This
effect leads to the absence of transport in one-dimensional
infinite disordered lattices. On the other hand, if the in-
teraction of the particle with lattice vibrational modes is
taken into account, the resulting polaron dynamics be-
comes more complicated, leading in some cases to the
possibility for occurrence of a mobility edge [2]. Further-
more, this interaction with the lattice can lead, in other
instances, to an effective correlation between the local
lattice site energies and the nearest-neighbor overlap in-
tegrals resulting in possible particle delocalization even
in one dimension [3]. Particular forms of the electron-
phonon interaction can be eliminated and effectively taken
into account as a nonlinear term in the electronic equa-
tion [4]. In these cases, the dynamics of an electron in
the disordered medium can be addressed as a problem
of the combined effects of disorder and nonlinearity in
transport in quasi-one-dimensional media. As with dis-
order, nonlinearity in a discrete lattice leads effectively
to the creation of localized wavelike modes, that, never-
theless, have the ability for efficient propagation in an or-
dered medium. When nonlinearity and disorder coexist in
a one-dimensional model, their combined effects lead in
some cases to suppression of propagation of these modes,
whereas in others to partial propagation [5-8]. To ad-
dress the issue of propagation in a disordered nonlinear
lattice, we study a model based on the discrete nonlinear
Schrodinger equation (DNLS) where the disorder resides
completely in the nonlinearity.

Consider an electron (or, more generally, an excitation)
moving in an infinite one-dimensional (host) lattice that
contains random impurity molecules. The two species
of impurity (type A) and host (type B) molecules form
a random binary alloy and each have an identical, unique
electronic state accessible to the electron. The existence
of strong local couplings between the electronic and

vibrational modes in each species results in a random
binary distribution of cubic nonlinearity type terms in the
tight-binding equation for c¢,, the electronic probability
amplitude at site n,

dcy,
;-
dt

= V(C,ﬁ.] + Ccp o) Xn I('nl;(f,, B (l)
where V is the nearest-neighbor electronic transfer matrix
element. The nonuniform nonlinearity parameter yx, is
proportional to the local electron-phonon coupling in each
species at site n under the assumption of an antiabatic
approximation [4]. The probability distribution P(y,) for
Xn 1s bivalued:

Pix,) = pdxn — xa) + (1 = p)dlxn - x5). (2

We note that the system described by Eq. (1) is intrinsi-
cally nonlinear and does not reduce to a usual Anderson
type problem in any limit. When y. = yp = x it re-
duces, however, to an ordered nonlinear lattice with in-
teresting self-trapping properties [9,10].

In order to study the localization properties of a wave
packet in the nonlinear binary alloy lattice described by
Egs. (1) and (2), we place an electron initially near the
middle (identified with the site n = 0) of a long chain and
observe its time development for relatively long times.
In order to quantify localization we calculate the packet
mean square displacement at each instant of time; the
latter is given by

(m?y = Z m e, (3)

m=-—-x

where the normalization 3", [¢,.(1)]” = 1 has been used.

Our numerical scheme is that of the fourth order Runge-
Kutta; its accuracy was monitored through total proba-
bility conservation. In order to exclude any undesired
boundary effects we use a self-expanding lattice [3]. The
results to be presented in the present Letter involve the
most disordered case. viz., p = % although other binary
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fractions have also been investigated [11]. In the nu-
merical calculations we used two distinct initial electron
preparations. The simplest one (type I) involves complete
initial particle localization whereas in the second (type II)
the particle wave packet is spread approximately over a
distance 20 determined through a Gaussian:

C,,(O) = an.O type L, (4)

type II. é)

The normalization factor is N? = >~ exp(—m?2/20?%) =
01(q), where the nome q of the theta function is related to
the width of the Gaussian through the relation 202 Ing =
—1. No phase information was added in type II initial
conditions. By varying o one can delocalize the initial
spread of the electron to an arbitrary degree and also
recover the initial condition of type I in the limit of o0 —
0. Since for different realizations of the lattice the central
site at n = 0 will have different nonlinearity values, we
introduce a register r,p that keeps its value of y. Thus,
the n = 0 site coincides with the initially occupied site (in
type I initial conditions) or the center of the Gaussian (in
type II initial conditions). The register, defined as r p =
(xa» xB), denotes that the initially occupied site (impurity
or center of the Gaussian), has nonlinearity value xa
whereas the nonlinearity value for the other type sites has
value yp. The main results of our simulations for initial
conditions of type I and type II are presented in Fig. (1).
In Fig. 1(a) we plot the mean square displacement as a
function of time for various ya for rao = (ya,0) whereas
in Fig. 1(b) we show the corresponding case of rsp =
(xa, xB)- The former case is that for which the host lattice
is assumed to be linear, whereas in the latter case we
have a genuine nonlinear binary system. In both cases we
observe that, after a short initial transient, the mean square
displacement becomes exactly proportional to the square
of time, i.e., the motion of the packet becomes ballistic.
We note, however, that the coefficient of proportionality
between /(m?) and ¢, representing the rate (or speed) of
the ballistic motion, is markedly different from that in the
linear, ordered lattice. In the latter case we have (m?) =
2(Vt)?. Furthermore, we note that the wave packet speed
changes drastically when the value of the nonlinearity
parameter x, at the initially populated site exceeds a
certain threshold critical value x... This behavior is
directly related to the effects of the one nonlinear impurity
dynamics embedded in an infinite lattice with nonlinearity
value yp with 0 =< yp < . The case for yp = 0 is well
studied and leads to a y., = 3.2V [4,12]. The case with
X8 # 0 is more complicated but it can also be shown
that there is a y., that now also depends on the value yp
[11]. In both cases, while ya < y.r there is no probability
for self-trapping at the initial site leading to complete
particle escape. When y4 = y.r, on the other hand, self-
trapping occurs leading to partial localization at the initial
site while the rest of the probability wave escape to

en(0) =  expl(—n/40%)
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FIG. 1. Electronic mean square displacement as a function of

time ¢ for localized initial conditions (V = 1). In (a) nonlinear
impurities are distributed randomly in a linear chain r,5 =
(x,0) having several nonlinearity y values. In (b) nonlinear
impurities are distributed in the nonlinear chain r.p = (y,3)
for different nonlinearity parameter values. In the inset we
plot longer time dependence of the mean square displacement
showing the persistence of the ballistic nature of the notion.

infinity. The results for the mean square displacement
of an initial Gaussian packet with r49 = (x4,0) show the
same ballistic motion effect, although the critical value of
the nonlinearity parameter y., for occurrence of partial
localization changes. An approximate analytical estimate
for the modified critical nonlinearity parameter yg for
local self-trapping with the Gaussian initial condition for
the case ryp can be obtained, showing a rapid increase
of x& as the width of the Gaussian packet increases,
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especially for o = 0.3 [11]. We observe that ballistic
propagation prevails for all values of y,, although the
rate of propagation is directly affected by the value of the
nonlinearity parameter at the central site. For nonlinearity
values in a site larger than the critical one, there is
partial self-trapping, thus reducing the total probability
wave that can escape to infinity. Similar effects are
observed in the more general case where yp # 0 [11].
In Fig. (2) we show actual particle propagation in the
disordered nonlinear lattice with initial conditions of
type 1. We observe complete particle delocalization in
Fig. 2(a) accompanied by ballistic escape to infinity while
in Fig. 2(b) there is partial localization in the site at the
center of the Gaussian initial condition. In both cases
the mean square displacement is very similar to the one
obtained with a localized initial condition.

When the previous series of numerical studies are
repeated choosing an initial site (or site where the center
of the Gaussian is located) without nonlinearity (rog).
the ballistic propagation persists with rates close to the
one of the perfect lattice. No partial localization in the

(b)

FIG. 2. Electronic probability propagation profile as a func-
tion of time for the nonlinear random binary alloy, with a
Gaussian initial condition and o = 1.0. In (a) ro3 = (10,0) and
in (b) rag = (20,0). In (b) we observe partial localization at
the central site of the Gaussian initial condition. In both cases
the untrapped portion escapes ballistically.
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vicinity of the initial site was observed except for very
large nonlinearity values. In the latter cases the particle
is trapped partially in the nonlinear sites adjacent to the
initial one.

The absence of any particle localization for nonlinear-
ity smaller than a critical value (the actual value depends
on the initial preparation of the wave packet), and the bal-
listic character of the electronic propagation even in the
presence of genuine disorder are the most notable fea-
tures of our model. These properties are consistent with
the analytical results for the one impurity problem [13].
but markedly different from the subdiffusive propagation
occurring in the fully nonlinear lattice with on-site ener-
getic disorder [6]. The ballistic nature of the propagation
is dominated by the behavior of the model in the small
nonlinearity regime. For small y, values we can replace
the probability in the nonlinear term of Eq. (1) with the
corresPonding exact solution of the linear problem, viz..
le, (01" = 17,(2v)[* (for localized initial condition) and
obtain €, = —x, Ic,,l2 ~ —,\/,,J,f(ZVt). where €, plays the
role of an effective local time-dependent site energy at lo-
cation n, with J, being a Bessel function of the first kind
and order n. We note that in this limit the local disordered
electronic site energies have an amplitude that decays in
time leading to an effective asymptotic disappearance of
the disorder. The large- x, regime, on the other hand, can
be understood through the application of Aubry’s anti-
integrability limit [14]. The assumption of an initially lo-
calized wave function and small nearest-neighbor matrix
elements leads rigorously to the existence of a breather
mode that corresponds here to self-trapping [15]. The un-
trapped portion of the probability renormalizes y, in the
remaining portion of the crystal to much smaller values.
thus leading to ballistic propagation [16].

In addition to the dramatic departure from an antici-
pated Anderson type localization of the particle, “non-
linear disorder” directly affects the plane wave scattering
properties. To study these effects we embed a disordered
nonlinear segment of length L in an infinite linear lat-
tice. The segment starts at site # = 0 and ends at site
n = L and has binary nonlinearity values xa.xp (with
p = é). We then inject a plane wave with wave number
k and study its transmission properties as a function of the
length L [17]. We set c,(1) = ¢, exp(—iEr) in Eq. (1),
where E is the energy of a stationary state [9,17.18] and
obtain

E(bn = v(d’n*l + d)n'-l} ~ Xn l(ﬁnl:(ﬁrw (6)

The injected (Rp), reflected (R,;), and transmitted (7')
amplitudes of the waves are related though the equation

| Roe™ + Rye ™ n =0,

ikn (7)
Te n=1L.

Cbn

where the energy-—wave-number reldtion is that of the
infinite linear lattice. viz.. E = 2V cos(k). For a given
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segment of length L we obtain an averaged realization-
independent transmissivity in the following way: For each
wave vector k we vary T, accumulate the total number of
transmitting cases through the segment characterized by
2 =TI /IRo|* > 2, (¢2, = 1079), and normalize with
the result of the corresponding linear ordered segment.
Subsequently, we average over k (by sending waves of
all wave vectors), thus obtaining a normalized estimate
of the nonlinear disordered segment transmissivity. We
follow this procedure for various segment lengths from
L =20 to 1000 [11]. In Fig. 3 we display results for
several disordered segments rsp and compare them with
the transmissivity of the nonlinear ordered segment. We
observe a power-law decay of the transmissivity with
the segment size and with a seemingly nonlinearity-
independent drop. This behavior is markedly different
from the exponential drop of the transmissivity found in
the corresponding linear disordered segment (not shown
in the figure [11]) and also expected from previous
investigations [19,20]. A fit to the expression t? « L™#
finds B = 0.76, although this value depends slightly
on the segment realization. Power-law decay in the
transmission of plane waves has also been observed in
nonlinear models with energetic on-site disorder [5,21].
The two conclusions of this study, viz., the absence
of complete localization of the wave packet accompanied
by ballistic propagation and the power-law decay of the
transmission coefficient as a function of the segment size,
present examples of the intricacies found in nonlinear dis-
ordered systems. In the present model, the initial prepa-
ration of the system plays a dramatic role in the dynamic
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FIG. 3. The transmission coefficient for plane wave propa-
gation across a disordered nonlinear segment of a random
binary alloy rag = (xa, xs) is plotted as a function of the seg-
ment length L, for several ya, xp values (V = 1). We note
that the register r4p does not carry any initial condition infor-
mation in these cases of plane wave propagation. The curve
with ry; corresponds to an ordered nonlinear segment studied in
Refs. [17,18]. The effect of disorder in the nonlinear segment
is evident.

properties of the wave propagation. The nonlinear aspect
of the system effectively cancels the disorder when lo-
calized, solitonlike modes are injected, while the disor-
der aspect becomes more dominant when extended waves
are introduced in the lattice. It is expected that this
peculiar behavior has consequences in disordered quasi-
one-dimensional systems with strong electron-phonon
coupling.
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FIG. 2. Electronic probability propagation profile as a func-
tion of time for the nonlinear random binary alloy, with a
Gaussian initial condition and ¢ = 1.0. In (a) r4p = (10,0) and
in (b) rap = (20,0). In (b) we observe partial localization at
the central site of the Gaussian initial condition. In both cases
the untrapped portion escapes ballistically.



