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Absence of Localization in a Nonlinear Random Binary Alloy
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We investigate electronic propagation in a one-dimensional nonlinear random binary alloy modeled

by a discrete nonlinear Schrodinger equation. We find absence of electronic localization except for
large nonlinearity parameter values. The presence of disorder is completely overcome by the nonlinear
terms leading to ballistic propagation of the untrapped electronic fraction. The existence of disorder
in the model is manifested in the power-law decay of the transmissivity of plane waves through the

medium as a function of the system size.

PACS numbers: 71.55.Jv, 72.15.Rn

The theory of Anderson localization predicts that the
wave function of a free electron moving in a one-
dimensional lattice with on-site energetic disorder is local-
ized even for an infinitesimal amount of disorder [1]. This
effect leads to the absence of transport in one-dimensional
infinite disordered lattices. On the other hand, if the in-

teraction of the particle with lattice vibrational modes is
taken into account, the resulting polaron dynamics be-
comes more complicated, leading in some cases to the
possibility for occurrence of a mobility edge [2]. Further-
more, this interaction with the lattice can lead, in other
instances, to an effective correlation between the local
lattice site energies and the nearest-neighbor overlap in-

tegrals resulting in possible particle delocalization even
in one dimension [3]. Particular forms of the electron-
phonon interaction can be eliminated and effectively taken
into account as a nonlinear term in the electronic equa-
tion [4]. In these cases, the dynamics of an electron in

the disordered medium can be addressed as a problem
of the combined effects of disorder and nonlinearity in

transport in quasi-one-dimensional media. As with dis-
order, nonlinearity in a discrete lattice leads effectively
to the creation of localized wavelike modes, that, never-
theless, have the ability for efficient propagation in an or-
dered medium. When nonlinearity and disorder coexist in

a one-dimensional model, their combined effects lead in

some cases to suppression of propagation of these modes,
whereas in others to partial propagation [5—8]. To ad-

dress the issue of propagation in a disordered nonlinear
lattice, we study a model based on the discrete nonlinear
Schrodinger equation (DNLS) where the disorder resides
completely in the nonlinearity.

Consider an electron (or, more generally, an excitation)
moving in an infinite one-dimensional (host) lattice that
contains random impurity molecules. The two species
of impurity (type A) and host (type 8) molecules form
a random binary alloy and each have an identical, unique
electronic state accessible to the electron. The existence
of strong local couplings between the electronic and

where V is the nearest-neighbor electronic transfer matrix
element. The nonuniform nonlinearity parameter g„i~

proportional to the local electron-phonon coupling in each
species at site n under the assumption of an antiabatic
approximation [4]. The probability distribution P(x„)for

y„is bivalued:

P(X„)= p~(X. —X~) + 11 —p1~(X —
Xe. 1

We note that the system described by Eq. (1) is intrinsi-

cally nonlinear and does not reduce to a usual Anderson

type problem in any limit. When p& = y& = y it re-

duces, however, to an ordered nonlinear lattice with in-

teresting self-trapping properties [9,10].
In order to study the localization properties of a wave

packet in the nonlinear binary alloy lattice described by
Eqs. (1) and (2), we place an electron initially near the
middle (identified with the site n = 0) of a long chain and

observe its time development for relatively long times.
In order to quantify localization we calculate the packet
mean square displacement at each instant of time; the

latter is given by

(rn ) = m
'

~~ „,(t)(-.

where the normalization g „~c(t)~ = 1 has been used.
Our numerical scheme is that of the fourth order Runge-

Kutta; its accuracy was monitored through total proba-
bility conservation. In order to exclude any undesired

boundary effects we use a self-expanding lattice [3]. The
results to be presented in the present Letter involve the

most disordered case. viz. , p = =, , although other binary

vibrational modes in each species results in a random

binary distribution of cubic nonlinearity type terms in the
tight-binding equation for c„,the electronic probability
amplitude at site n,

dc„
~(cn~ I

+ &'n —i,~ Xn Icnl cn ~

dt
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fractions have also been investigated [11]. In the nu-

merical calculations we used two distinct initial electron
preparations. The simplest one (type I) involves complete
initial particle localization whereas in the second (type II)
the particle wave packet is spread approximately over a
distance 20. determined through a Gaussian:

c„(0)= B„p type I, (4)
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c,(0) = —exp( —n /40 ) type II (5)
N

The normalization factor is N~ —= p exp( —m~/2~2)

Hq(q), where the nome q of the theta function is related to
the width of the Gaussian through the relation 2o. 1nq =
—1. No phase information was added in type II initial
conditions. By varying cr one can delocalize the initial
spread of the electron to an arbitrary degree and also
recover the initial condition of type I in the limit of o.
0. Since for different realizations of the lattice the central
site at n = 0 will have different nonlinearity values, we
introduce a register rA~ that keeps its value of g. Thus,
the n = 0 site coincides with the initially occupied site (in
type I initial conditions) or the center of the Gaussian (in
type II initial conditions). The register, defined as rqs =—

(gz, gs), denotes that the initially occupied site (impurity
or center of the Gaussian), has nonlinearity value g~
whereas the nonlinearity value for the other type sites has
value g~. The main results of our simulations for initial
conditions of type I and type II are presented in Fig. (1).
In Fig. 1(a) we plot the mean square displacement as a
function of time for various g~ for r~p = (g~, 0) whereas
in Fig. 1(b) we show the corresponding case of rqs =—

(gz, gs). The former case is that for which the host lattice
is assumed to be linear, whereas in the latter case we
have a genuine nonlinear binary system. In both cases we
observe that, after a short initial transient, the mean square
displacement becomes exactly proportional to the square
of time, i.e., the motion of the packet becomes ballistic.
We note, however, that the coefficient of proportionality
between Q(rn2) and t, representing the rate (or speed) of
the ballistic motion, is markedly different from that in the
linear, ordered lattice. In the latter case we have (m2) =
2(Vr)'. Furthermore, we note that the wave packet speed
changes drastically when the value of the nonlinearity
parameter g& at the initially populated site exceeds a
certain threshold critical value g„.This behavior is
directly related to the effects of the one nonlinear impurity
dynamics embedded in an infinite lattice with nonlinearity
value g~ with 0 g~ ( ~. The case for g~ = 0 is well
studied and leads to a g„=3.2V [4,12]. The case with

g~ 4 0 is more complicated but it can also be shown
that there is a ~„that now also depends on the value ~~
[11]. In both cases, while g~ (g„there is no probability
for self-trapping at the initial site leading to complete
particle escape. When g& ~ g„,on the other hand, self-
trapping occurs leading to partial localization at the initial
site while the rest of the probability wave escape to
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FIG. 1. Electronic mean square displacement as a function of
time t for localized initial conditions (V = 1). In (a) nonlinear
impurities are distributed randomly in a linear chain rA~ =
(g, O) having several nonlinearity g values. In (b) nonlinear
impurities are distributed in the nonlinear chain r&~ = (g, 3)
for different nonlinearity parameter values. In the inset we
plot longer time dependence of the mean square displacement
showing the persistence of the ballistic nature of the notion.

infinity. The results for the mean square displacement
of an initial Gaussian packet with rgp: (gg, 0) show the
same ballistic motion effect, although the critical value of
the nonlinearity parameter g„for occurrence of partial
localization changes. An approximate analytical estimate
for the modified critical nonlinearity parameter g„for
local self-trapping with the Gaussian initial condition for
the case r&0 can be obtained, showing a rapid increase
of gg, as the width of the Gaussian packet increases,
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FIG. 3. The transmission coefficient for plane wave propa-
gation across a disordered nonlinear segment of a random
binary alloy r» = (g„,ge) is plotted as a function of the seg-
ment length L, for several y~, ye values (V = 1). We note
that the register r&& does not carry any initial condition infor-
mation in these cases of plane wave propagation. The curve
with rl 1 corresponds to an ordered nonlinear segment studied in
Refs. [17,18]. The effect of disorder in the nonlinear segment
is evident.

segment of length L we obtain an averaged realization-
independent transmissivity in the following way: For each
wave vector k we vary T, accumulate the total number of
transmitting cases through the segment characterized by
t = (T( /(Ro( & t,„,(t,„,= 10 6), and normalize with
the result of the corresponding linear ordered segment.
Subsequently, we average over k (by sending waves of
all wave vectors), thus obtaining a normalized estimate
of the nonlinear disordered segment transmissivity. We
follow this procedure for various segment lengths from
L = 20 to 1000 [11]. In Fig. 3 we display results for
several disordered segments rq~ and compare them with
the transmissivity of the nonlinear ordered segment. We
observe a power-law decay of the transmissivity with
the segment size and with a seemingly nonlinearity-
independent drop. This behavior is markedly different
from the exponential drop of the transmissivity found in
the corresponding linear disordered segment (not shown
in the figure [11]) and also expected from previous
investigations [19,20]. A fit to the expression r2 ~ L &

finds P = 0.76, although this value depends slightly
on the segment realization. Power-law decay in the
transmission of plane waves has also been observed in
nonlinear models with energetic on-site disorder [5,21].

The two conclusions of this study, viz. , the absence
of complete localization of the wave packet accompanied
by ballistic propagation and the power-law decay of the
transmission coefficient as a function of the segment size,
present examples of the intricacies found in nonlinear dis-
ordered systems. In the present model, the initial prepa-
ration of the system plays a dramatic role in the dynamic

properties of the wave propagation. The nonlinear aspect
of the system effectively cancels the disorder when lo-
calized, solitonlike modes are injected, while the disor-
der aspect becomes more dominant when extended waves
are introduced in the lattice. It is expected that this
peculiar behavior has consequences in disordered quasi-
one-dimensional systems with strong electron-phonon
coupling.
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