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Finite Size Corrections to Scaling in High Reynolds Number Turbulence
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We study analytically and numerically the corrections to scaling in turbulence which arise due to
finite size eA'ects as anisotropic forcing or boundary conditions at large scales. We find that the devia-
tions b( from the classical Kolmogorov scaling g =m/3 of the velocity moments i~u(k)~ &CL'k de-
crease like 6( (Re) =c Re 3t' . If, on the contrary, anomalous scaling in the inertial subrange can ex-
perimentally be verified in the large Re limit, this will support the suggestion that small scale structures
should be responsible, originating from viscous effects either in the bulk (vortex tubes or sheets) or from
the boundary layers (plumes or swirls), as both are underestimated in our reduced wave vector set ap-
proximation of the Navier-Stokes dynamics.

PACS numbers: 47.27.Jv, 47.27.Eq, 47.27, Nz

A major question in the theory of turbulent flows is

whether there exists an asymptotic scaling state at high

Re, and whether in this state the values of the scaling ex-
ponents conform with the classical predictions of the Kol-
mogorov theory [I]. There is some experimental evidence
that a scaling state exists, and that the scaling exponents
deviate from the Kolmogorov prediction (anomalous scal-
ing). Theoretically there is still no proof for anomalous
scaling based on the Navier-Stokes equations. Recently
it was suggested that the reason for deviations from the
Kolmogorov theory is related to the creation of small

scale structures like vorticity sheets and tubes in which

the local geometry is not three dimensional and isotropic
[2].

One could hope that numerical simulations could be
used to decide whether classical or anomalous scaling
should be expected in high Re flows. If anomalous scal-
ing were found, simulations could distinguish the respon-
sible physical mechanism. Unfortunately, in direct simu-

lations of the Navier-Stokes equations with current com-

puters one can achieve only up to Taylor-Reynolds num-

bers of about Rex=200 [3]. The range of scales for
which power law behavior is observed at such values of
Rex is too small to distinguish between classical and

anomalous scaling. In addition, at low to moderate
values of Re one can have corrections to scaling due to
finite size effects, and it is hard to take these into account
if their expected Re dependence is not known. It is this
latter issue which is the focus of this Letter. %e examine
these corrections to scaling analytically and numerically,
and show how to take them into account in any future ex-
periment or numerical simulation.

A high Re flow can be constructed in a numerical
simulation by using a reduced wave vector set approxima-
tion (Fourier-Weierstrass decomposition) that was intro-
duced and studied extensively by two of us recently. For
a detailed description and references of previous work we

refer to Refs. [4-6]. The main idea is to start with a reg-

(~u(k)
~

) =c k exp[ —k/kj ] . (2)

It was found [5,6] that a good approximation could be

ular Fourier decomposition of the velocity field u(x, t) in

terms of plane waves exp(ik x), but admit only a geome-
trically scaling subset K= UIKI of wave vectors in the
Fourier sum,

u(x, t) = g u(k, t)exp(ik x) .
keK

The subset of wave vectors is chosen such that Ko
=[k„,n = I, . . . , Nj and Kt = I2 k„,n = I, . . . , N],
1=1, . . . , I „. „. The basic set Ko is chosen to contain
wave vectors of different lengths that interact dynamical-
ly to a good degree, and I,. „ is chosen large enough to
guarantee that the amplitudes u(k„'",t) of the smallest(I,„)

scales are practically zero. This of course depends on the
viscosity v and the Reynolds number Re. The flow is

driven by a deterministic, nonstochastic driving f(k, t)
with k in Ko. In fact, only the seven smallest wave vec-
tors in Ko were driven. Obviously, this driving is not iso-
tropic. The k range around externally forced amplitudes
is denoted henceforth as stirring subrange.

The simulations that we refer to here used a value of
N=80 and scanned a range of Re from 10 to 10 [6]. It
should be stressed that in this scheme the density of wave
vectors per k interval decreases like I/k, whereas it in-
creases like k in full grid simulations. For this reason
small scale structures (as vortex tubes or sheets) cannot
be resolved very accurately. But, on the other hand,
many more scales than in full simulations can be exam-
ined. For the largest Re our simulations comprise more
than 3 orders of magnitude between the wave number
with maximum dissipation and the outer scale. The scal-
ing exponents (~ can be determined with high accuracy.

The scaling exponents were measured in this numeri-
cal simulation by computing the mth-order spectra
(~u(k)

~
), and fitting the three parameter function
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FIG. 1. Results from our reduced wave vector set approxi-
mation for ~bg (Re)

~
for m =2, 4, 6, 8, IO, bottom to top. The

straight lines correspond to the scaling law 8( (Re) ccRe
as predicted by (23).
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obtained globally with

k) =2k( /m, kf =(I3.5t)) (3)
10 100 1000 'IO 000

with t) being the Kolmogorov length scale. Equation (3)
means that for higher order velocity moments the cross-

over between the inertial range and the viscous range
takes place at a smaller value of k; i.e., the inertial range

is less extended. As we want to examine the effects of the

large scales, i.e., of the stirring subran e, we eliminate

viscous elfects by fitting (2) with fixed k ) [according to
(3)] only in the interval [O, kf ]. The resulting scaling

exponents are (very slightly) corrected to guarantee

(3 = I; see [5,6] for the procedure. (3 = I is required by
Kolmogorov's structure equation [7], which strictly holds

only in an isotropic situation. But as (3=i is frequently
enforced in the analysis of experimental data, we do it

here as well. %e represent the numerical results for the

scaling exponents in terms of the deviations from the clas-
sical predictions g (Re) —nt/3. The results, which per-
tain now to both inertial range and stirring range, are
sho~n in Fig. 1 for four different Re. They are decreas-

ing with increasing Re.
Qualitatively this feature can be understood from the

comparison with the local g (k) for each Re; see Ref.
[5]. The bg (k) are calculated by locally employing the
fit (2) to the spectra with k$ fixed. The results are
shown in Fig. 2(a) for Re= 1.05x IO and in Fig. 2(b)
for Re=1.4x10 . Clearly, with increasing Re the iner-

tial range extension exceeds more and more that of the
stirring range, and thus the effect of the nonuniversal

forcing diminishes.
To get quantitative information, we fitted the power

law

FIG. 2. Scale resolved intermittency corrections —6'g (k)
«r m=2, 4, 6, 8, IO, bottom to top. In (a) we have
Re=I.05x IO; in (b) it is Re=I.4x 107 The fit range is

[k/~IO, k ~IO] for all k. For details see Refs. [5,6].

that P is close to ~'p for all m.
A good way to understand this behavior is to consider

the Euler part of the equations of motion using the repre-
sentation by the Clebsch variables. In these variables the
velocity field is written in terms of the two scalar func-
tions k(x, t) and p(x, t):

u(x, t) =AVp —Vp, (5)

where the potential p(x, t) is determined from the in-

compressibility condition. Using these variables, the
equation of motion

B,u(x, t)+u Vu = Vp(x, t)—
reads

8,)(x,t)=, B,p(x, t) =-bP N'f

bpxt ' ' &xt

(6)

(7)

TABLE I. Fit parameters to Eq. (4). If the m dependence
of c is expressed by a power law, we will get c ~m . —. .
The data are compatible with c ~(m —3) —,indicating
agreement with the Kolmogorov structure equation, which for-
bids corrections if m =3. Here the change of sign of the c is
also immediately grasped.

bg (Re) =c Re (4) 10

to the b( (Re) determined from the spectra. The results
of the fit (4) for c and P are given in Table I. We find

0.24
+0.11

0.29
—0.32

0.28
—1.30

0.31
—4.03

0.30
—7.02
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where the Hamiltonian & is defined as

J2a(x, /) =& (x, /)+ip(x, /) . (8)

These canonical variables can be used to expose integrals
of motion. In particular, the "occupation number" 1V of
quasiparticles and the "momentum" P of quasiparticles,

JV =„ia/, i dk, P =„kia/, i dk, (9)

are such integrals of motion [9,10]. These integrals of
motion could also be expressed as functions of the veloci-

ty field u(x, /). For example, from Eq. (8) and
Parseva1's theorem one gets P = JJVa —(x )a *(x )dx,
and with Eq. (7) one concludes that P =fX(x )
xVp(x)dx =fu(x)dx. Obviously, the integrai P can be
nonzero only in an anisotropic system, and therefore can
lead us to scaling laws that capture the rate of decay of
anisotropy as a function of k. To proceed in this direc-
tion we first find by dimensional analysis that in an iso-

tropic system the k component of %, A'k, depends on k

and the mean energy flux per unit time per unit mass, e,
according to

N/, /3(k —k') =(asap & =Ca' k ' 8(k —k'), (10)

with C being a dimensionless constant. Of course, this re-

sult can be translated back to the standard Kolmogorov
result for the energy Ek =Ca k . Next, we realize
that in an anisotropic system this relation can change,
since N/, can depend now on a dimensionless ratio of the
"momentum flux" over the energy flux t. . The energy
flux is defined by the equation

k
8, &/, + =0,

which in a stationary state requires t. k to be k indepen-

dent, ek =e. The momentum flux x, likewise, is defined

by

&k—8,P =kk 8,N (/) =

In a stationary system x/, is also k independent, and from

Eqs. (10) and (12) we see that the dimension of x can be
written as [/r] =[@ k ] =length/(time) . In an aniso-

tropic system we seek a new solution for Ãk,

(i 2)

Np ——Cp ~/3k '3/ f(( ) (i 3)

where the dimensionless parameter (/, is proportional to
the ratio of the two fluxes z and e. Since the two fluxes e
and /r have difl'erent dimensionalities, the parameter g/,

must involve k and e to some powers. The unique com-
bination that is proportional to n is

4k 62/3k I/3
(i 4)

e =„dx iu(x, /) i'/2.

This formulation allows us to introduce normal canonical
variables a(x, t) and a*(x,t) (cf. [8])

The 1'unction f((/, ) is chosen such that I'or /r =0 Eq. (13)
regains its Kolmogorov form, i.e., f(0) = l. Assuming
that for small ~ the correction to the spectrum is propor-
tional to /r, for small g we choose f(() = I+0(g). No-
tice that in (13) and (14) we assumed that the anisotrop-
ic correction to A'k is analytic in z. This is of course a
crucial assumption, but it can be justified by an explicit
calculation, and it was shown to be correct to all orders in

perturbation theory; see [9]. Denoting the anisotropic
correction as 6'A'k, we conclude that for small anisotropy,
g«1,

BJV/, /JVJ, ~ k (i 5)

is even in k. [Note that in accordance with our discrete
simulations we define F(k) with a Kronecker A.] Now,
since F(k) is even in k, the lowest order correction due to
anisotropy must be the second order. We can conclude
therefore that

$F(k )/F (k ) cx k (i7)

To bring this result to a form that can be tested against
the simulation, we multiply F(k) by k (numerically we of
course use discrete wave vectors) and rewrite our result in

the form

F(k) =(iu (k ) i
'&

=/2k [I + a2(kL ) / ] exp[ —k/k) ] (18)

(L is the outer length scale. ) The same conclusion is ob-
tained by considering the effect of externai shear [11].
Since it introduces another time scale r(kL), spectral
corrections should be a: r(k)/r (kL) a: k . On scales
on which the shear dominates (k «L ') the second term
in (18) will be even the leading contribution and thus will

change the dominating k power to k ~. Yakhot in-

dependently derived the k scaling law for small k in

an anisotropic flow [12]. The crossover from k /3 to
k can be well observed in experiments [12]. Here we

restrict ourselves to k )L '. So the second term in (18)
is an anisotropy correction, which will become smaller for
increasing k due to isotropization by eddy decay. Yet it

will render the scaling exponent k dependent. Denoting
the local scaling exponent

din&�)u

(k)
~

&/dink as —$2(k),
we find from (18)

,(k) =—+ +2 k 2

k) ' 3[1+a2 '(kL) 2/3]
(i 9)

As a function of k this expression has a minimum which

is rather flat, and can lead to an apparent exponent g2'

We estimate the value of this exponent by the minimum
of (19) which approximately is

Obviously, since a/, is odd in k [cf. (9) or (I )] so is 6N/, .

In contrast, the double correlation function of the velocity
field F(k),

F(k)/3. (k —k') =Tr&u(k)u*(k')&
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2/5

((.,pp) 2 + 10 9
i

i3/s
4k("L

Here, we used the fact that I «az '(kL) / near the
minimum, justified a posteriori, as kj L ))9az /4.
From (20), we can predict that the deviation of (z'
from —', goes down when Re increases, since k) L
ce Re / [7]. We obtain

(20)

(aPP) ce Re
—3/lo (21)

Exactly the same calculation can be repeated for all other
scaling exponents (, and all of them approach their Kol-
mogorov 41 values with the same scaling a- Re ' . The
result of the calculation is

=—+sgn(a )(„. ) m 10 9
4k/ L

6&~~"P) =c Regm Cm

with

' 2/5

(22)

(23)

Cm
=sgn

C2

2/5
am m am

3/5

(24)

From Eq. (24) and Table I we can determine the m

dependence of a . Assuming a power law dependence,
we estimate am ~ m —,which is a rather strong m

dependence. This finding for a means that higher order
moments are more affected by corrections to scaling than
lower order ones. Together with the fact that their power
law behavior is cut off at lower k vectors [cf. Eq. (3)] it

means that it is harder to observe clean power laws in

higher order moments for an appreciable range of scales.
In summary, the results of the numerical simulations of

the Navier-Stokes equation with a reduced wave vector
set approximation are in very close correspondence with

the predictions of a theory in which the deviations from
classical scaling are solely due to corrections to scaling.
It is tempting to conjecture that if a full treatment of the
Navier-Stokes dynamics results in genuine anomalous

scaling that does not disappear in the limit of high Re, it

has to do with the small scale structures that are underes-
timated in our simulations as well as in the analytical ar-
gument that referred to the Euler equations and neglect-
ed viscosity and boundary layers. Such a conjecture
would be in accord with other theoretical expectations
which link anomalous scaling to the creation of vortex
structures like tubes and sheets.
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