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Beyond the Time Independent Mean Field Theory for Nuclear and Atomic Reactions:
Inclusion of Particle-Hole Correlations in a Generalized Random Phase

Approximation
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The time independent mean field method for scattering defines biorthonormal sets of single-
particle wave functions and corresponding creation and annihilation operators. Two-particle —two-

hole {2p-2h) correlations can be introduced through a generalized random phase approximation;
1p-1h contributions vanish (Brillouin theorem). While the general variational method for scattering
by Giraud and Nagarajan solves inhomogeneous Euler equations by inversion of the standard, Her-

mitean Hamiltonian, the present approach diagonalizes a non-Hermitean Hamiltonian, which carries
the information about entrance and exit channels.

PACS numbers: 24.10.Cn, 21.60.Jz

The time independent mean field theory (TIMF) of col-
lisions [1] has been tested successfully for solvable cases
of 3 and 4 particles [2] and has been applied to various
nuclear and atomic reactions [3]. It is then natural to go
beyond the mean field approach by introducing particle-
hole (p-h) correlations in analogy to the case of bound
states. In this Letter we outline how this goal can be
reached by a generalized random phase approximation.
Our approach can be viewed as an alternative of more
traditional inclusions of correlations into scattering theo-
ries, such as the antisymmetrization of cluster structures

[4] and fiuctuations into time dependent Hartree-Fock
theory [5], for instance.

We start from a time independent functional [1] which

calculates the Green function D(z) between incoming
and outgoing channel waves y, y'. The variation of

F(~', ~) = (x'l~)(~'Ix)/(~'( -H)l~),

with Im z & 0 gives, in appropriate normalization,

(z-&)I~) = Ix), (~'l(z-&) =(x'I, (2)

D( ) =(x'I( -II) 'l~) =(x'I+) =(~'lx), (3)

with iII, 4' as stationary (saddle) points of (1). For sim-

plicity we assume that y and y' are Slater determinants
made of N square integrable orbitals g, and y', , respec-
tively. H is the standard full Hamiltonian of N particles.
In the same way one may obtain the T matrix by mul-

tiplying y, y' by prior and post potentials V, V' in the
above equations. While one normally calculates D as a
function of (complex) energy z, tue nouj reverse the strat
egy: We rewrite (2) with (3) as

( -&)l~) =Alx)(x'l~), (4a)

(~'I( —H) = A(~'lx) (x'I. (4b)

which we interpret as right and left eigenvalue equations
of the non-Hermitean Hamiltonian

H' = H + A[y) (y'l; A = 1/D complex,

with eigenvalues z = z(A). Choosing fixed values of A in

(4) and (5) preserves the equivalence of (2) and (4), since
Eqs. (4) are invariant under normalization of i11, @' and
their solutions are stationary points of the functional (1)
which also is invariant under normalization of 4', 4' .

The discrete eigenvalues of H' are solutions of the ob-
vious quantization condition

A ' =-(x'l(z —H) 'Ix).

which holds for both right and left eigenstates according
to Eqs. {4). It is clear that any real E of the discrete
spectrum of H generates a complex z close to E, at least
whenever A is small. Conversely, there could be discrete
eigenvalues z of H which are not in the vicinity of dis-

crete eigenvalues of H. As long as A is the reciprocal of
a physical amplitude D, an additional, discrete, complex
eigenvalue emerges, close to the physical scattering en-

ergy E. The continuum of H' is the same as that of H
because of the compactness [6] of [g)(g'[.

Square integrable left and right eigenstates of H' can
be found from the Rayleigh-Ritz —like functional

F'(~', ~) = (~'I( —H') l~)
~here z appears as a norm and phase control Lagrange
multiplier, actually equal to the desired eigenvalue of H',
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(v llx&) = o = (xI lv») ««8i (8)

This just means a linear rearrangement of the or-
bitals y, , y', , leaving the determinants y, y' invariant.
Then the term A(4'lx)(x'I@) is a product of overlaps

(vIlx, )(x' lv») and the Hartree-Fock equations read

(n, —t )lv') = ~, lx')(x', lv;),
(vol(n* —~) = ~l(v', Ix*)(x',I,

(9a)

(9b)

A, = A', reciprocal of the single-particle Green function,

A, = A', = ((x', l(rh —h) 'lx, ))

The operator h = t+ U contains a self-consistent mean
field U, similar to the standard Hartree-Fock potential,
and the propagation energies il, are also given by self-

and the trial functions 4', 4' are square integrable as long
as Imz g 0. Indeed, the variational equations of (7)
induce the right and left eigenvalue equations (4). It
should be stressed here that, from the point of view of
the variational principle for F', one looks for z when A
is given, while from the point of view of I', one looks for
A when z is given.

In this paper we investigate solutions of (4) where Re z
can be interpreted as an energy of the continuum of H,
with Im z ) 0, and we consider z as a function of A. In
other words, we seek an energy z for which the Green
function D(z) is equal to a given value A . Our way of
solving (6) for z consists in diagonalizing H' via suitable
approximations of @,4' in the functional (7). This in-

volves first a Hartree-Fock approximation which induces
a zero order answer zs(A), then possibly a Tamm-Dancoff
approach (TDA) to the spectrum of H', and finally ran-
dom phase approximation (RPA), second order correc-
tions Az(A), with the final result zs(A) = zo(A)+ Az(A).
First order corrections are automatically canceled by the
Hartree-Fock method (generalized Brillouin theorem).

The Hartree-Fock approximation to the diagonaliza-
tion of H' consists in restricting @,4" to just Slater de-
terminants 4, 4', made of orbitals y;, y', , i = 1, 2, . . . , 1V.

To simplify the corresponding variational equations, we
redefine X, , X', by the conditions

consistent formulas similar to those defining Hartree-
Fock self-energies. From (9) and (10) we immediately
read ofF the Hartree-Fock Hamiltonian corresponding to
a',

h' = h + ) A, lx, )(x,'I, (11)
j=1

bearing in mind (8). Standard manipulations of (9), to-
gether with (8), show that &p, , V', are biorthogonal. Fi-
nally one can use norrnalizations such that

(v Ilv») = b'&., (v', Ix, ) = (xIlv») = v'4,
(xll(n' —h) 'Ix')

Q(x', l(n' —~) 'Ix*)
'

(12)

since there are still infinitely many ways to adjust the
phases and norms of x, , x', in such a way that x, x' re-
main unchanged. We then extend the diagonalization
of Ii' beyond the first N right and left eigenstates, and
obtain an infinite, biorthonormal set of orbitals V~, rp&,

presumably complete. This set most likely includes con-
tinuum states, to be normalized accordingly, hence

(v'plv ) =~p o»(np n), -
(n —h')Iv ) = o (vt31(ns —~') = o

(14)

(»)
The equivalence of inversion and diagonalization on the
many-particle level, based on the functionals F(@',4')
and F'(4', @), is refiected on the single-particle level:
The homogeneous equations (9) for h' are strictly equiv-
alent to the inhomoyeneous TIMF equations,

(n. —t )Iv') = IX') (v', l(n'- ~) = (x', I (16)

obtained from the functional F(4', 4) with 4', C' as
Slater determinants. In particular the eigenvalues of
h'(A = 0) = Ii, Eq. (15), coincide with the poles of D,
where A = 0, when calculated from Eqs. (16).

To improve the mean field approach by p-h corre-
lations, we introduce creation and annihilation oIiera-
tors ai', a~, o. = 1, 2, . . . , oo for orbitals &p~; a&, a&,
P = 1, 2, . . . , oo are the corresponding operators for &p&.

Finally a set of operators J, , J;, i = 1, 2, . . . , N is intro-

duced for orbitals x, , and a similar set J,', J,' for orbitals

X,'. A second quantization representation of H' is then

(17)

N N

IC') = a,'. Io), (c'I = (ol a', , (18)
i=1 i=1

as right and left quasiparticle vacua. Hence a complete
set of p-h operators is given by

(19)
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H' = ) (v' Itlys)a~as+ —) (p' &p~lulvpp(ps)a a a'sa'p+ AJ, J2 JN J~ J,'J,'.
o,P '-P.b

In (17) one set only of operator pairs at, a& appears.
It anticommutes canonically according to (14). With

I 0) for i = 1, 2, . . . , N, m = N+1, . . . , oo, and the ansatz for
as fermion vacuum we have boson operators on the RPA level is

Q = ) (X",Bt, —Y",B',) . . (20)
mt

If one sets Y, = 0 a priori, one falls back to the TDA.
While Wick's theorem is available to calculate the ma-

trix elements of kinetic energy T and two-particle interac-
tion V, the matrix elements of Alx) (x'I are less familiar.
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arates the RPA-correlated eigenstate !4& based on IO&

from another eigenstate of H' defined by the RPA ansatz
!4 ) = Q„liII&. In the second family, for which we
will use a label v, —E' is the energy difference between
&iIJ—',

I

= &O'IQ —, and the correlated state (~11'I based on
(C'I. The solutions v of the first family can be told from
those v of the second family by selecting as E' those RPA
eigenvalues close to the eigenvalues of the TDA, which
provides only M solutions. A straightforward, slightly
tedious calculation gives for (22)

) (C, ,X', + A, ,„jY',) = E*Y—„', (23a)

They are simplified, however, in the biorthogonal repre-
sentation (12), and read

&c"Io,'&' Ix) = (c"Ix&&v
'

Ix.&i&v ', Ix'&,
(21a)

&x'l~' ~', IC'& = (x'l@&(x', lv &i&xllv. ),

&@'IX&&0
' O'. Ix.xj &

&v ', Ix'& &v,'Ixj)
(21b)

&xllv') &x,'Iv»&

Let M be the number of p-h pairs (mi) retained in a prac-
tical calculation. The 2M solutions of the RPA equations

&c"I[[H' Q ] B.'j]IC'& = E:&c"I[Q.B."j]IC'&
) (A„j, ,X,+ B„, ,Y",) = +E*X„',,
m'c

with(22)

&
c"I [H' Q.] B.', IC'& = E:&c"I[Q.B.', ]IC'&

then split into 2 families of M solutions. For the first
family E* denotes the "excitation" energy which sep-v

(26)

— &x,'x,'Iv v )
Cnj, m =

&v lv,'I-&leman& —A(,
l

)(,
I )

I I
m n j (25)

&v llx'&(v,'Ixj &

'

(xllv )&v.' Ixj& - &v '.Ixi&(xilw &

m~nij( gm 'gi) (pnyjl lympj& +
( Il )( /

I )
jj )

( /! )( /I

qA B) (28)

is symmetric and Eqs. (23) read

It is then easy to show that the "symplectic diagonal-
ization" problem (29) is equivalent to diagonalizing the
antisymmetric matrix

namely,

x = s-')'ms-'~'

X" X'

(3o)

(31)

An elementary derivation of (31) from (29) involves the
definition of any symmetric square root of S and its in-

version, and the assumption that E„* g 0. While trans-
lational and rotational symmetry of H give rise to null
eigenvalues in the usual RPA, the lx)(x'I term in H' de-
stroys these symmetries, hence eigenvalues F„' = 0 are
usually not to be expected. Special proofs are available
when an exceptional incident occurs.

The fact that A is antisymmetric proves that the spec-
trum splits into two families of opposite eigenvalues, as
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using A = A(4'!x) &x'!4) and the relation

~' = ~', = Al(v ', Ix.) &x', lv. ) (27)

Equations (23) show less symmetry than the usual RPA
equations [7], as expected from the non-Hermitean H'
as compared to H. However, B and C are symmetric
under exchange of the index pairs (mi) and (nj), the
block matrix

announced. Consider now the M eigenvalues Eii„, com-
ing from the diagonalization of A, and define the auxil-
iary "perturbative RPA" matrix

S, = I, 0&a&1,eC A
(32)

A eB) '

with corresponding A, . It is clear that, as e ~ 0, half of
the eigenvalues of the auxiliary problem (32) converge to-
wards Ec, while the other M eigenvalues tend to Eo . —
By continuity when e ~ 1, this makes it easy to separate
the eigenvalues of (29) into the two announced families,
both being complex due to the non-Hermiticity of H'.
With the first family, the usual bosonic interpretation of
the RPA-like Hamiltonian finally provides the correction

(33)

A function inversion of the final result z2(A) = zo(A) +
Ez(A), generating a function A(zz), then provides the
improvement on the Green function, beyond the mean
field, by inclusion of p-h correlations.

In conclusion, the key element of our study is the equiv-
alence of the following two problems:

(1) Calculate the Green function D(z) at some fixed

(complex) energy z by operator inversion of the exact
Hamiltonian H. One solves an inhomogeneous problem
with channel wave functions y, y' as inhomogeneity.

(2) Diagonalize a Hamiltonian H' which difFers from H
by the operator Alx) (x'I, comprising the reaction bound-

ary conditions. In this homogeneous approach, one cal-
culates the (complex) eigenvalues z as a function of the
parameter A = 1/D and obtains the desired Green func-
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tion by inversion of the function z(A).
Thus operator inversion is replaced by operator diag-

onalization followed by function inversion. While prob-
lems (1) and (2) can equally well be solved in the mean
field approximation, we use (2) to incorporate correla-
tions in the wave function in terms of p-h bosons. Al-

though the resulting boson Hamiltonian is less symmetric

than in standard (Hermitean) RPA, the remaining sym-
metry is sufficient to diagonalize the (non-Hermitean) bo-
son Hamiltonian by canonical, but nonunitary transfor-
mation and to calculate z(A) in this boson approxima-
tion.

We tested numerically the above method for a one-
dimensional, separable, two-body Hamiltonian of relative
motion

(q'O'I&lqQ) = ~(Q —Q') [q'~(q —q') —»'qq' exp( —~ q') exp( —~"q")], (34)

0.004

0.0035

(a)

0.003

e
04 0.0025
e

0.002

0 ' 0015

Exact
RPA -ss"

TIME ~-

0.001
3 3.5 4.5

Re (E)
5.5

-0.29

-0.3

-0.32

-0.33

-0.34

-0.35
3 3.5 4.5

Re (E)
5.5

FIG. 1. Real and imaginary part of the exact, TIMF, and
RPA amplitudes vs ReE, at ImE=2.0 for a solvable two-body
model with Gaussian interaction.

with q, Q the relative and total momentum, which gives
an obvious solution [3] for the exact amplitude D(z) of
(3). Our TIMF and RPA numerics, however, used the
single-particle representation which becomes mandatory
for antisymmetrized, many-particle calculations. The

t channel waves y, y were taken as boosted Gaussian func-I

tions. Mass and potential parameters as well as boost
and width of y, y' were chosen to be typical for nuclear
physics problems; for technical details we refer to [8]. The
RPA approximation of D(z), based on (23) and (33), in-

deed improved the TIMF results (see Fig. 1) obtained by
solving (16).
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