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Rotation Induced Prolate Spheroid above the Critical Temperature
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For temperatures above T, (where the nuclear equilibrium shape is spherical at rotational frequency
cu = 0), a small rotation can generate a prolate equilibrium shape "rotating" around its symmetry axis.
This prolate spheroid is caused by a quantum shell effect which exists at positive cu, but not at cu = 0.
For T = 1.5 MeV (&T,), "sOs is prolate for all positive spins up to 60'.

PACS numbers: 21.60.Jz, 21.60.Ev, 27.70.+q

Classical systems like the Earth, the Sun, and a liquid
drop would be spherical if they were not rotating. In the
seventeenth century there was a debate regarding the effect
of the Earth's rotation on its shape [1]. Newton argued
that a small rotation would make the shape slightly oblate,
where the symmetry axis coincides with the rotation axis.
On the basis of current astronomical evidence, Cassini
argued for a prolate shape rotating about its symmetry axis.
Geodetic measurements by Maupertuis in Lapland (1738)
confirmed that the Earth's shape is oblate.

At low temperatures most atomic nuclei have non-

spherical equilibrium shapes, even when they are not
rotating. These deformed shapes are caused by quan-
tum shell effects, which are amplified by nucleon-nucleon
interactions. If a nucleus is not rotating, then it has a criti-
cal temperature T„above which the deformation produc-
ing shell effects become ineffective, and the equilibrium
shape is spherical [2—4]. It has been expected that this
hot nucleus would resemble a classical liquid drop. The
value of T, has a maximum for isotopes midway between
magic numbers, with smaller T, for other isotopes. For
rare earth nuclei the maximum T, is 1.85 MeV [5].

What effect does a small "rotation" have upon the
shape of a spherical nucleus with T & T, [6]'? Since the
shell effects which produce deformation are ineffective
for T & T, and cu = 0, one expects this spherical nucleus
to respond to a small rotation in the same manner as a
classical system, i.e., as a slightly oblate spheroid rotating
about its symmetry axis. This expectation is confirmed by
previous calculations with the macroscopic Landau theory

[7,8] and the microscopic finite-temperature Hartree-
Fock-Bogoliubov cranking (FTHFBC) theory [9]. The
Landau calculations provide a universal phase diagram,
which predicts that any positive rotational frequency ~
generates an oblate spheroid rotating about its symmetry
axis, if T & T, (cu). The previous FTHFBC calculations
on ' Er, ' 8Yb, and ' SSm give the same result.

This Letter reports new FTHFBC calculations for
Os. The critical temperature is 1.33 MeV. For T =

1.5 MeV, rotating the spherical shape produces a prol'ate

spheroid rotating around its symmetry axis, for all positive
spins up to I = 60. This result is in marked contrast
with previous calculations, which predict oblate shapes
above the critical temperature. For T = 1.5 MeV and

Each orbital has an occupation probability

1 (3')fjm
1 + e{ej—~—rum)/r '

where the chemical potential p, is adjusted so that g, f,
equals the particle number. The angular momentum of
the nucleus is generated by individual nucleons, not by a
collective rotation [6]. The spin is

(J,) = /mfa (4)

For T & T„ the quadrupole moment of a s1owly rotating
nucleus is

Q20 g(jm IQ20I jm)f' (5)

The quadrupole moment of a nucleon harmonic oscillator
orbital is

(6)
where the oscillator length b = (fi/meso)' and N is the

oscillator quantum number.

I = 40 the prolate spheroid has a quadrupole deformation

P = 0.053. This value of P is comparable to those
obtained in previous FTHFBC calculations [9] for ' Yb
and ' Sm which gave oblate spheroids at T = 1.5 MeV
and I = 40 with P = 0.031 and 0.044, respectively, and
for ' Er which gave an oblate spheroid at T, = 1.64 MeV
and I = 40 with P = 0.042.

What is the explanation for this rotation induced prolate
spheroid (RIPS) above the critical temperature'? Is this
effect peculiar to ' Os, or can it be expected in other
nuclei and other physical systems? For T ) T, and ~ =
0 a nucleus has a spherical equilibrium shape. Then the
finite-temperature mean field equation is

h Ijm) = ej Ijm),

where h is the spherically symmetric mean field, m im-

plies m„and the single-particle energies e, are degenerate
in m. Consider a small rotation of this sphere around the

z axis [6]. (All axes are equivalent. ) Then the mean field

equation in the rotating frame is
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m=-13/2 (oblate)
m=-11/2 (oblate)
m=- 9/2 (oblate)
m=- 7/2 (prelate)
m=- 5/2 (prolate)
rn=- 3/2 (prolate)
rn=- 1/2 (prolate)
m=+ 1/2 (prelate)
m=+ 3/2 (prolate)
m=+ 5/2 (prolate)
m=+ 7/2 (prolate)
m=+ 9/2 (oblate)
m=+11/2 (oblate)
m=+13/2 (oblate)

FIG. 1. Single-particle energies in the rotating frame versus
the rotational frequency for a j = —, shell.

It is instructive to first consider a single j shell, i.e.,
j =

2 . The single-particle energies in the rotating frame

(e, —corn) are linear in m, as shown in Fig. 1. From
Eq. (6) it follows that the orbitals with the lowest and

highest m values have negative quadrupole moments
(oblate), whereas orbitals with intermediate m values have
positive quadrupole moments (prolate). Consider zero
temperature. (For even nuclei at or near the magic num-

bers, the ground state shape is spherical, so that T, = 0.)
For T = 0 and cu & 0 orbitals with (e, —corn) & p. are
occupied (fj = 1) and orbitals with (ej —fffm) & fu, are
empty (f, = 0). Summing the quadrupole moments of
the occupied orbitals, Eq. (5) gives the nuclear quadrupole
moment as a function of p„or equivalently as a func-
tion of the particle number N. Figure 2 gives Q2O(N) for
T = 0 and cu & 0. If the j shell is less (more) than half
full, then the quadrupole moment is negative (positive),
and the shape is oblate (prolate). A half full shell gives
a spherical shape. For any finite temperature, Q20(N)
has the same oscillatory shape as at zero temperature,
but the amplitude of Q20(N) is significantly reduced as T
increases.

This argument shows that for temperatures above T,
(where the equilibrium shape is spherical at co = 0), a
small rotation breaks the degeneracy in the quantum num-

ber m, thereby creating a residual shell effect which can
generate a prolate spheroid rotating about its symmetry
axis. It should be emphasized that this effect is produced
solely by the rotation, and does not require any nucleon-
nucleon interaction.

Next we include many j shells in the calculation of
the quadrupole moment for T & T, . One can numerically
evaluate the sum in Eq. (5). However, it is more instruc-
tive to consider the Taylor series expansion of Q20(co)
about co = 0

Q20(~) Q20(0) + (dQ201
k dfdf ) =0
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FIG. 2. The quadrupole moment versus the particle number

for a j =
2 shell.

From Eqs. (3), (5), and (6) it can be shown that

Q20(0) = 0

(

dQ20
)

E des )~=0
(9)

fd Q20i
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~ f, (1 —fj)(2fj —1),

where fj is the orbital occupation at cu = 0,

e(e) —I )/T (11)

This quadratic approximation for Q2O(co) agrees with the
exact value [Eq. (5)] within 2% at spin I = 2. Simply
knowing the sign of (d Q2p/dao ) 0 determines whether
the spherical shape at co = 0 and T O T, will become
oblate or prolate when it is rotated. Observe that the right-
hand side of Eq. (10) does not involve co or m. Since j ~
2 and 0 ~ f, ~ 1, every term in Eq. (10) must be non-

negative except (2f, —1). If a j shell is more (less) than

half full, i.e., f, ) s (f, ( t at ss = 0, then it induces
a prolate (oblate) shape when rotated. From Eq. (11) it
follows that if e, & p (ej & p, ) then rotating a j shell
gives a prolate (oblate) contribution to the quadrupole
moment. Each j shell gives a maximum contribution to
Q2p(cu) when f, (1 —f1) (2f, —1) has an extremum, i.e.,
f, = 0.21 or 0.79. Equations (7)—(11) show that for a
hot (T & T,) spherical nonrotating system, a few simple
properties (i.e., the temperature, chemical potential, and
spherical shell energies e, ) determine whether a small
rotation creates an oblate or a prolate equilibrium shape
rotating around its symmetry axis.

The quadratic approximation [Eq. (7)] to Q2O(~) has
been evaluated for the model space and spherical shell en-
ergies used by Kumar and Baranger [10]. Figure 3 shows
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FIG. 3. Quadratic expansion coefficient of the quadrupole
moment versus the proton number for rare earth nuclei at
various temperatures.

the proton quadrupole moment for rare earth nuclei. The
proton magic numbers are 50 and 82. For T ~ 1.0 MeV
each j shell loses its individual oscillatory signature. In-
stead there is only one oscillation in Q2o(Z) between
Z = 50 and 82. At lower temperatures there are oscilla-
tions in Q2o(Z) for each j shell. There are similar results
for the neutron quadrupole moment between the neutron

magic numbers 82 and 126. For 'ssOs this calculation
gives proton and neutron quadrupole moments which are
both positive (prolate) for T ) T, . This calculation in-

dicates that many other nuclei should exhibit rotation in-

duced prolate spheroids above their critical temperatures.
Since we intend to describe rare earth nuclei with small

deformations at low spins, we have used the Kumar-

Baranger model space, which does not include the j&5~2

neutron shell and i~3g2 proton shell. Including these shells
tends to suppress the prolate spheroids for T = 2.0 MeV.
If these shells are included, then at T = 1.5 MeV proton
shapes are prolate for Z = 71—75 and neutron shapes are
prolate for N = 107—118; for T = 1.0 MeV these ranges
are Z = 67—80 and N = 104—122. The nucleus ' Os
remains prolate at T = 1.5 MeV and cu & 0, even when
these shells are included.

Fully self-consistent FTHFBC calculations in the
Kumar-Baranger model space, which include quadrupole-
quadrupole nucleon-nucleon interactions, have been done
for the isotope chain '~ 's Er at T = 2.0 MeV and

I = 2. These FTHFBC calculations have been compared
to the simple expressions given here for quadrupole
tnoments [Eqs. (5) and (7)]. For the Kurnar-Baranger
model space, all methods predict the same mass number

(A = 174) for the onset of prolate spheroids above the
critical temperature.

All calculations described above refer to the equilib-
rium shape of the nucleus, and do not include shape
fluctuations. The fractional fluctuation in the mass
quadrupole moment is

TABLE I. The fractional fluctuations in the quadrupole mo-
ments are BQ2o and Bgzz. The spin is I and the critical tem-

perature is T, .

20
40
60

T.
(MeV)

1.06
0.57
0.27

0.63
0.40
0.43

0.36
0.22
0.22
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where M = 0 and 2, and the expectation values are cal-
culated with respect to the FTHFBC equilibrium density
operator. Egido [11] has shown that Eq. (12) includes
both quantum and statistical fluctuations. For each spin
I, there is a different critical temperature T„where the
FTHFBC equilibrium phase is prolate noncollective rota-
tion for T ~ T, [12]. Table I gives the fluctuations BQ2M
for several values of (I, T,). These fractional fluctuations
are all considerably less than unity. Consequently the
equilibrium prolate shape is physically significant and is
not washed out by the fluctuations.

In conclusion, for temperatures above T, , the deforma-
tion producing shell effects are ineffective at to = 0 and

the equilibrium shape is spherical. It had been expected
that this hot nucleus would behave as a classical liquid

drop, so that a small rotation of the spherical nucleus
would produce an oblate equilibrium shape. However,
this Letter shows that for T & T„a small rotation of the
spherical nucleus unmasks a residual quantum shell effect
which can generate a prolate equilibrium shape "rotating"
around its symmetry axis. No nucleon-nucleon interac-
tions are needed to create this effect. It would be interest-

ing to search for this phenomenon in other systems, such
as metallic clusters.
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