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Lmv Energy Expansions for Double-Pion Photoproduction
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The leading terms of a power series expansion in p = M /MN for the threshold amplitude of
double-pion photoproduction on a nucleon are obtained by the use of an effective chiral Lagrangian.
Contributions due to the A(1232) resonance are included.
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The past few years have seen renewed experimental
and theoretical interest in electromagnetic pion produc-
tion from nucleons. In particular, threshold neutral
pion photoproduction from the proton has received much
attention in connection with the low energy theorems
(LET) based on gauge invariance and chiral symmetry.
At threshold, where the Fl electromagnetic multipole
produces an s-wave pion, the LET gives [1]

+O(ys) = —2.3 x 10 s/M +,

where p, = M~/Mlv, K~ = 1.793 is the anomalous mag-
netic moment of the proton, e is its charge, and g ~
is the pion-nucleon coupling constant. Although exper-
iments from Saclay [2] and Mainz [3] originally indi-

cated a strong violation of the LET this disparity subse-
quently disappeared by a reanalysis [4—6] of the data.
The accepted experimental number for E&~+E (n.op) is

(—2.0 6 0.2) x 10 /M +, in excellent agreement with
the LET prediction of Eq. (1). However, calculations
based on chiral perturbation theory (CHPT) [7] indicate
that there is an extra contribution, not contained in the
LET, which is of order pz. It was argued that, since
the anomalous magnetic moment of the nucleon is gen-
erated by pion loops, all remaining one-loop diagrams
would have to be included for consistency. It was these
loop diagrams which gave rise to the extra contribution
mentioned above, thereby modifying the LET to

and has inspired recent efforts in estimating effects due
to isospin breaking [8], although as shown by Naus [9)
such effects appear not to modify the LET. Eventually
two-loop effects would have to be included. The reasons
for the apparent discrepancy between the LET of Eq. (1)
and that of the CHPT calculations have been discussed
by Scherer, Koch, and Friar [10] and by Davidson [11].
Similar arguments were given by Naus [12] who examined
the effect of the Li-Pagels [13] mechanism on LET' s. We
remind the reader that the usual LET's for charged pion
photoproduction are still valid since the loop contribu-
tions as calculated in CHPT are suppressed in compari-
son to the dominant Kroll-Ruderman term [14].

The situation with respect to LET's for single-pion
photoproduction is suKciently interesting to warrant
broadening the discussion to double-pion photoproduc-
tion. Moreover, such an analysis is required if one is to
determine the nonresonant background contributions to
photoproduction and electroproduction of two pions in
the resonance region. Such experiments are in progress
at Mainz [15,16] and are future possibilites at CEBAF.
Earlier theoretical treatments [1?—19] based on current
algebra and PCAC (partial conservation of axial-vector
current) or chiral Lagrangians did not deal in detail with

the threshold region. Most recently, Dahm and Drech-

sel [20] calculated the threshold tree-level Born diagrams
without making explicit the low energy expansion as we

do here and fail to include the contribution from the
6(1232) resonance. Here we use a chiral Lagrangian to
calculate threshold ampitudes for the various double-pion
photoproduction processes depicted by

M2gcHPT ~LET + 7r 2 0 89 x 10—p -~(k)+&(p.) -&(pf)+ (~ )+ (3)

where the pion decay constant I" 93 MeV. We note
that the effect of the extra loop diagrams has been to
change the sign of Eo+ and generally to give a result in
severe disagreement with experiment. However, as was
discussed in [7], due to slow convergence the CHPT re-

sults are not amenable to an expansion in p, . In fact the
total tree level plus one-loop (including counterterms)
contribution gives —1.33 + 0.09 in the same units, which
demonstrates the importance of p, and higher terms.
This result still deviates substantially from experiment

The four-momentum for each particle is indicated in

parentheses and the two outgoing pions have Cartesian
isospin indices a and b. One can show that the T rna-

trix allows a decomposition into six independent isospin

amplitudes, e.g. ,

7 = T 6 b+T b bV3+ T 63 &b+& ~3b&a

+T l6abcTc + T &&ab3 ~ (4)

Amplitudes for the various physical channels are given

in terms of these isospin components, i.e. , T(pp
p7r+x ) = T~ + T2 —T5 —Ts Furthermore. , the Lorentz
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structure of each of the T"'s can be written as T"
ei'A"„, where e„ is the incident photon polarization vec-
tor. Then the amplitudes A"„admit of the decomposition

«(qi)

«'(q2)

A"„=A", „+Az p„+A3 „p k + A4 „p . qi

+A5 p kp qi+Asp„p qi+ATp. kp„
+Asp. kp„p qp,

with A"„=A",p, „+A".fpf„+ A"&qi„ for j = 1, 3, 4, 5.
For convenience, we have left out the Dirac spinors of
the initial and Anal nucleon. The number of independent
invariants is reduced to four by imposing four gauge con-
ditions: k Ay = 0 A2+ k A3 ——0, k. A4 ——0, and

A6 + k A5 ——0. At threshold, the amplitude takes a
simple form in the pN center-of-mass frame,

(a)

(d)

(b)

(d)

(c)

I

L

(c)

(e)

JHf, = g„s"= (A2 —M~As + (E, + MN + k)A7
N,

+(E;+MN —k)M As)cr (k x e),

(6)
where N, = /2MN(E, + MN) with E, the target nu-

cleon energy, k =!k! is the photon energy, and Aj is the
appropriate combination of the A"'s. We note that the
threshold amplitude is of magnetic dipole character un-
like the case of single-pion photoproduction where it is
electric dipole (o e). Summing over spins and polariza-
tions, the square of the threshold matrix element reduces
to

(g) (h)

FIG. 1. Tree-level contributions to pN —+ vrxN reaction.
Born diagrams (a)—(f) and b diagrams (g)—(j).

!W,,!'=,'", A, -M.A, +'('+") M.A,
SP1DS,C

M A
p(l + 2p)

where we have used k = 2M (1 + p,)/(1+ 2p) and E; +
MN = 2MN(1+ p)z/(1+ 2p) . Finally, the differential
cross section may be expressed in the form

8 qiqzdAid03~3
16kW qi(W —uz) + uiqi qz

2

with

o.M2

spins, e

and a = ez/4«. Here 8 is a statistical factor and W = l/s
the center-of-mass energy. Our amplitudes are calculated
in tree level by the use of a chiral effective Lagrangian
[21,22] which includes pseudovector (PV) pion-nucleon
coupling:

gxN 1 ~ eg~N PN P 2M pal, '75Ti ~ pi 3 pp&ij kTipj ct QA,'+ pp+5 ss&j Tipj A
2MN 4+2 2MN

——(1+T3) p„A" + (k, + k„T3)O„F" Q+ es,sj p;B„pjA".4 N

e
& pp(Tib3j —T36ij )4'i' A

(10)

Here I"" = 0"A" —0"A" is the electromagnetic field
tensor, @ is the nucleon field, and P is the pion field. The
second and third terms in the Lagrangian are the Wein-
berg (pion-nucleon scattering) [21] and Kroll-Ruderman
(single-pion photoproduction) [14] contact terms, respec-
tively. The fourth term arises from minimal substitution
in the Weinberg term and is unique to double-pion pho-
toproduction. The relevant diagrams at the tree level are
illustrated in I"ig. 1. They can be divided into two sets

! of diagrams, (a)—(c) and (d) —(f), which are separately
gauge invariant. At threshold, only diagrams (a), (d),
and (f) are nonvanishing. Table I displays numerical val-

ues for each diagram: from this table one observes that
the anomalous magnetic moment contributions are only
important for photoproduction of two neutral pions. In
fact, as in the case of pn ~ vr n, it is only these terms
which drive the threshold amplitude for pn ~ vr ~ n.
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TABLE I. Numerical values for the threshold amplitude [expression in the curly braces of Eq. (6)] from diagrams depicted in
I"ig. 1. E and M denote charge and anomalous magnetic moment couplings at the pe% vertex, respectively. A is the ofF-shell

parameter at the 7t ND vertex. The units are GeV

pm+~
n7r+7r'
p~'~'
n7r+7r

p~ ~'
n7r'7r'

a
57.8

—40.9
0

—57.8
—40.9

0

d
—214.6
151.7

0
214.6
151.7

0

f(&)
—14.4
—10.2
—28.8
—14.4
—10.2

0

f(M)
—0.2
4.2
5.7

—0.2
4.2

—6.1

g
38.3+ 21.6 A+ 64.3A'

-27.1 —15.3 A —45.5 A
0

-38.3 —21.6 A —64.3 A
—27.1 —15.3 A —45.5 A

0

1, 8 —8.4 A —12.0 A'
0

1.8 —8.4 A —12.0 A
0
0
0

2
5.7+ 11.1 A —4.1 A'
—1.3 —2.6A+ 1.0A
3.8+ 7.4A —2.7A

—1.9 —3.7A+ 1.4A
—1.3 —2.6 A+ 1.0A

0

We note that at threshold the dominant diagram is (d) and not the two-pion contact term (a).
One would expect the 6(1232) contribution to play a major role in two-pion production, especially away from

threshold. We include this effect by considering the most general form of spin-3/2 interaction Lagrangian and propa-
gator as described in [23,24]

Z~ = ey J Ts gpA" + y O„„(A)T,@8"P,+ y'e, „(A)ss,~T @A"&p, +H c.. (11)
7l'+ ~+

where y„represents the vector spinor field of the delta,
T, and Ts are isospin transition matrices, and

o- n(A) = g p+Aw vp

We use the parameter values [25] g ~~ = 2.16 and
M~ = 1231.7 MeV. The remaining 6 parameter, the
off-shell parameter A, is not well established so that our
results in Table I will depend explicitly on it. Analytic
expressions for the threshold delta contributions are too
lengthy to include here. Instead we give in Table I only

the numerical values in terms of A.
The main results of our analysis can be divided into

two parts: (1) the leading order contributions (tree-level
diagrams) from the PV effective Lagrangian, and (2)
the contributions from the intermediate state resonance
A(1232).

It is well known that this model gives LET's for single-
pion photoproduction which are in excellent agreement
with experiment. With this model we have computed
threshold expansions for all physical channels in double-
pion photoproduction from a nucleon. Denoting the con-
tent of the curly braces in Eq. (6) by Mq/q, we summarize
our results for the nonresonant diagrams as follows:

2

My/2(pp ~ p7r 7r ) = —2
~ ~ ~

2 —
z +2p, ——[9+3(Kp+ K„)]natl +O(p ),

/g~1 1 2 3

(2M~) ( gA'

2

Mg/2(pp ~ n7r vr ) = v2
[ [ ~

2 ——
2 [

——[7 —3(K„—~„)]p +O(p ),+ p I'g~&
2M&) l, gw2) 4

(14)

2

Ml/2(Yp~p 77rr) 4I
~ p —-[I+3Kp]p +o(p )

p p /'g~~l 1 2 3

(2M~ ) 4

Mq/2(pn n7r+7r ) = 21
I I

2 ——
& I

—-[7 —3(~&+K )] p +O(p )
/'g~l / 1~ 1

(2M~) l, g~z) 4
(16)

2

Mq/2(pn ~ p7r 7r ) = v 2
I [

2 ——
z [

——[7 —3(x„—K„)]p + O(p ),
t' g~~ l 2 3

l,2M~) gz~) 4

Mq/2(pn ~ n7r vr ) = 3~ [ r„p, + O(p, ),(2M~)

where we used the Goldberger-Treiman F = M~g~/g ~ with g~ being the axial-vector coupling constant. It
is interesting to observe that in the chiral limit the only nonvanishing amplitudes are those for which one of

the pions is charged. This leading term which arises from diagrams (a) and (b) in Fig. 1 is large in compari. -
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TABLE II. Contributions to the quantity X as defined by
Eq. (8) in y,barn.

Born

3.234
1.211
0.059
2.226
1.211
0.004

A=0
1.739
0.644
0.034
1.146
0.644
0.004

Born+A(1232)
A = —0.250

1.824
0.673
0.036
1.201
0.673
0.004

A = —0.175
1.816
0.674
0.035
1.203
0.6?4
0.004

son to higher order terms in the p, expansion. This is
the equivalent of the Kroll-Ruderman theorem extended
to double-pion photoproduction. However, in the case
of 2~ production, chiral symmetry breaking is seen to
be important, a result which holds also for single neutral
pion photoproduction. The anomalous magnetic moment
contribution appears at the p,

~ level and it is the lead-
ing order (in p) contribution to pn ~ nsrosro. It is ex-
pected that a loop calculation in CHPT would modify
these terms but not terms of lower order in p. Hence the
double-pion photoproduction process should provide an
interesting example for study within the CHPT formal-
ism.

The effect of the delta contribution is due mostly to
diagram (g). For psrovr, only diagrams (i) and (j) con-
tribute while none of the 6 diagrams considered here
contribute to n7rovr . However, we did neglect anoma-
lous magnetic moment terms in diagrams (i) and (j) as
well as diagrams corresponding to electromagnetic exci-
tation of the L. The eKect of the oE-shell parameter
present at 6 interaction vertices is shown in Table II.
For this table we list the quantity X which is related to
the slope of the cross section as qr and q2 tend to zero.
We have chosen three values of A to illustrate the re-
sults: A = 0 which corresponds to the absence of the
off-shell term, A = —1j4 as suggested by Peccei [22],
and finally, A = —0.175 which arises from a fit to single-
pion photoproduction in the delta region by Davidson,
Mukhopadhyay, and Wittman [25]. One can see that the
A dependence is minor. Moreover, whereas one observes
that although the delta excitation can be substantial it
clearly does not dominate the cross section at threshold.
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