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Universal Self-Diffusion and Subdiffusion in Colloids at Freezing
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We provide a theoretical explanation for the observed quasiuniversality of the ratio of the long-
time to short-time self-diffusion coefficients in colloidal liquids at freezing. We also predict that
the mean-squared displacement at freezing, plotted against a suitably renormalized time, yields
a universal curve showing a short-time subdiffusive regime and a long-time caged diffusion. We
obtain C,(k,t), the intermediate scattering function, for all (k,t) and show that it implies strong
non-Gaussian behavior in the probability distribution of the single-particle displacement at short

times.

PACS numbers: 82.70.Dd, 05.40.+j, 61.20.Ja, 64.70.Dv

In an interesting Letter [1], Lowen et al. made the
empirical observation that the ratio of the long-time self-
diffusion coefficient Dy, to the short-time or bare value Dy,
has a universal value close to 0.1 along the freezing line of
several liquids interacting with different potentials. They
based their conclusions on forced Rayleigh scattering ex-
periments performed on charge-stabilized colloidal sus-
pensions, as well as Brownian dynamics simulations on
several Yukawa liquids, with the OCP (one-component
plasma) and hard spheres as two extreme cases. The uni-
versal value of D /D, was offered as a useful dynamical
freezing criterion. This observation also serves as a more
incisive test of theories of mobility in liquids than mere
fits of diffusivity as a function of temperature or density,
since the latter allow too much latitude in the location of
the point at which the extrapolated diffusivity appears
to vanish.

In this Letter, we present a calculation of Dy /Dy,
in a self-consistent one-loop approximation, for model
systems of interacting Brownian particles. Our results,
which should apply to colloidal systems in which the
hydrodynamic interaction [2] can be neglected as well
as to Brownian dynamics simulations, are as follows:
(i) The observed dynamical universality of Dy /Dy is
in fact a direct consequence of the well-known [3] and
well-understood [4] universal height of the static struc-
ture of simple liquids at freezing. However, our calcu-
lation of the ratio gives (universally) 0.05 rather than
0.1, a numerical discrepancy on which we comment at
the end of this Letter. Our complete self-consistent cal-
culation is carried out explicitly for two pair potentials,
namely, hard spheres and 1/7%, but we show that the
results should hold for a much wider class of systems.
(ii) The mean-squared displacement (MSD) of a tagged
particle in the colloid shows (Figs. 1 and 2) subdiffusive
behavior (roughly t45) at intermediate times, crossing
over to a slow long-time (caged) diffusion. This is equiv-
alent to nonexponential temporal relaxation of density
correlations. (iii) The form of the intermediate (self-)
scattering function C,(k,t) for a large number of values
of the wave vector k£ and over all times implies (Fig. 3)

a substantial departure from Gaussian behavior in the
probability distribution of the particle displacement at
short times. Experiments performed to measure such
non-Gaussian [5] corrections will serve as a more demand-
ing test of theories of the dynamics of dense liquids and
colloids. (iv) The shape of the MSD vs time curve is
effectively decoupled from the actual value of the long-
time or renormalized diffusivity. By this we mean that
the theoretical (present work) and simulation [6] plots
of MSD in units of the mean interparticle distance o vs
time agree closely (see Fig. 1) if the time ¢ in each case
is measured in units of the renormalized diffusion time
7r = 0%/Dy, [where Dy is the calculated (for the theory)
and measured (for the simulation) long-time diffusivity]
[7). The same figure also shows the corresponding plot
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FIG. 1. We compare MSD data plotted against renormal-
ized time for three different cases: the dots are points read
off from graphs of the hard-sphere simulation data of [6]
(CH); the solid curve is drawn through the data obtained
at self-consistency in our calculation (SC); the dashed curve
represents the non-self-consistent data in our calculation (to
be compared with the theory of [2] (NSC). Both our sets of
data have been computed from the correspondng C,(k,t) for
ko = 0.2 which is the lowest k value accessible numerically
for very short times.

360 0031-9007/94/73(2)/360(4)$06.00
© 1994 The American Physical Society



VOLUME 73, NUMBER 2

PHYSICAL REVIEW LETTERS

11 JuLY 1994

1
09
08
NErD
—_ osf
% 05  i..¢
= Lt T R
= A ot
=
g
o}
3k X . . .
-3 -2 -1 0 1 2

logt
FIG. 2. We show MSD vs time on a log-log plot, clearly
depicting an initial short-time diffusion, followed by a sub-
diffusive regime, and an asymptotic long-time diffusion. The
inset shows a graph of the local slopes S(t) of the log-log plot,
highlighting the three different regimes indicated above.

of the results of a “non-self-consistent” (hereafter NSC)
calculation, similar to that of Medina-Noyola [2], which
can be seen to deviate very substantially from the data.
We believe that such a plot is the most useful compari-
son to make between experiments, simulations, and the-
ory, since it captures the kinetics of the suspension for all
times in much greater detail than plots of Dy /Dy against
density or temperature.

Most features of our results can be understood qualita-
tively as follows. Consider a specific (“tagged”) particle
in the suspension at temperature T. In the absence of
other particles, it has a diffusion coefficient Dy = T'/Ty
where the bare friction coefficient I'g is determined by the
viscosity of the solvent. The presence of other particles
interacting with (“caging”) the tagged particle enhances
the friction coefficient to a value I' = 'y (1 + Xp), leading
to a reduced long-time diffusivity [8]

Dr = Do/(1 + Xo). (1)
The “self-energy” X, is determined by the correlations
and dynamics of the suspension particles, each of which
is being slowed down in the same way. Thus, if we know
the liquid-state correlations among the particles [say in
the form of a static structure factor S(g)] the dynam-
ics, including the self-diffusivity, can be determined self-
consistently. The fact that the medium is highly cor-
related suggests that, at least at intermediate times, the
particle motion should deviate from simple Brownian mo-
tion. Moreover, since the only input to the calculation

S(k, 2) = %/dsq/dzl v(q) Ca(lk —al, z — 1) Culg, 21),
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FIG. 3. This figure shows the strong k dependence of the
quantity W (t)/o? for short times. We look at k values cov-
ering 2 orders of magnitude, from ko = 0.2 to ko 20;
the figure is clearly indicative of non-Gaussian effects in
P[R(t) — R(0)], the probability distribution of the tagged
particle position.

is S(g), whose height (=2.85) and shape at freezing are
very similar [3,4] for a wide variety of simple liquid sys-
tems, it is reasonable to expect a universal suppression
1/(1 + o) of diffusivity at freezing.

In more detail, note that the density of force in the
equation of motion for the tagged-particle momentum
density is [9]

F(r,t) = —n,(r, t)V/ c(|r = r'|)én(r',t), 2)

”

where én is the deviation of the (collective) number den-
sity n(r) from its equilibrium value ng, n, is the tagged-
particle number density, and ¢(r) is the direct pair cor-
relation function of the liquid. This form is physically
reasonable: the convolution of ¢ and én is simply the ex-
cess chemical potential i due to interactions, and thus
—ngVu is the density of (osmotic) force. As a result
of this nonlinear coupling, the local bare friction I'y is
replaced by a wave-number- (k) and frequency- (z) de-
pendent damping rate

['(k,z) =To (1 + Z(k, 2)). (3)

The starting point in the calculation of I'(k, z) is largely
standard [9], and rests on a simple application of a
fluctuation-dissipation theorem: the excess friction or
self-energy X in (3) is proportional to the autocorrela-
tion of the excess thermodynamic force F. In a Gaussian
decoupling approximation, this leads to

4

which is bilinear in the self-density and collective-density correlations (Cs and C., respectively), and the £y which
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appeared in the suppression factor in Eq. (1) is X(k =
0,z = 0). Note that in (4) and hereafter, we express
lengths and ti£nes in units of the mean interparticle dis-
tance o = ngy ° and the bare interparticle diffusion time
02/ Dy, respectively. With (4) and (6) (below) in this di-
mensionless form, the fact that 3 depends only on S(g),
and should thus be universal at freezing, is very clear.
In (4),

v(q) = ¢*[noc(q))? (5)

is the interaction vertex arising from (2), c¢(q) =
nal [1 — S‘l(q)] being the Fourier transform of the di-
rect correlation function.

Although the mode-coupling expression (4) is superfi-
cially similar to that in earlier (NSC) treatments [2,10]
of the effect of interaction on self-diffusion in colloids,
there is a major difference in the form we take for the
self-density and collective-density correlation functions:

Cs(sz) = —likz_a
z 4+ k)
Calk, 2) = — o) ©)

z2+ %%g—
In (6), the constant bare diffusivity which would appear
in the correlation functions used in [2,10] is replaced
by the wave-vector- and frequency-dependent quantity
Dy/[14+X(k, 2)]. This is a significant departure from ear-
lier studies which were not, in this sense, self-consistent.
One (partially self-consistent) approach [11] is notewor-
thy: it carries out essentially the same calculation as in
[2] but interprets the diffusivity on both sides of the equa-
tion as the zero-frequency value D(0). The final result is
an algebraic equation for D(0), which leads to a substan-
tial reduction relative to Dg, but the intermediate-time
dynamics is described no better than by NSC theories.
The various approaches have very different predictions
for the shape of the MSD vs time plot, as we shall see
below.

In writing (6), we have assumed that C, and C. are
renormalized in a similar manner. Although it has been
observed [8,12] that the interaction contribution to the
self-friction and collective friction are rather different in
form at intermediate densities, our approximation is rea-
sonable at the freezing densities considered here. For the
important wave-number regime that contributes substan-
tially to the integral in (4), the time decay is controlled by
Cs, since the large values of S(g) make C. decay much
more slowly. The magnitudes of the two renormaliza-
tions are likely to be very similar in this particular wave-
number regime. It is clear from (4) and (6) that we have
to solve an integral equation in four dimensions in order
to evaluate X(k, z) self-consistently.

It is useful to separate the question of the universality
of Dy /Dy at freezing from the actual numerical value of
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this quantity. A quick demonstration of the universal-
ity can be obtained from a preliminary NSC calculation
—that is, one in which the bare (£ = 0) self- and
collective-density correlation functions are used on the
right-hand side of (4). In that case the integral equation
reduces to an integral, and 3(0,0) is trivial to evaluate.
We used the freezing line data tabulated in Hansen and
Schiff [13] for the static structure factors of soft-sphere
potentials of the form V(r) = ¢ (%)n (n =1,4,6,9,12).
and the Percus-Yevick expression for the structure factor
of hard spheres (at a density at which the peak height
was 2.85) [14]. Gratifyingly, we found a robust value of
=~ 0.35 for Dy /Dy in all these cases, confirming that the
origin of the universality lies in the structure factor.

Having established the universality of Dy /Dy, we then
performed the full self-consistent calculation. On the face
of it (4) is a four-dimensional integral equation and hence
numerically somewhat involved. This has prompted
many workers studying similar problems in simple flu-
ids [6,15,16] to eliminate the wave-number dependence in
(4) by assuming a leading role for modes near the peak
position go of S(g), replacing the problem (4) by a one-
dimensional integral equation. Although this procedure
is intuitively appealing, it cannot be justified in a system-
atic manner (and indeed [6,15,16] do not suggest that it
can). However [17], we can use the spatial isotropy of the
correlation functions (6) to render the problem effectively
two dimensional, and evaluate (4) iteratively in a “pseu-
dospectral” manner. We note that the right-hand side
of (4) is the convolution of the functions C,(k,z2) and
C.(k,z) = v(k)C.(k,z) which are themselves isotropic,
so that in real space-time, £(r,t) = Cy(r,t)Ce(r,t). We
therefore begin by obtaining the real space Cy and C,.
from (5) and (6) with © = 0, and evaluate (4) the first
time around, using only two-dimensional transforms and
avoiding convolutions. The resulting 3(k, z) is fed into
(6) to give the new values for the correlation functions
and the process iterated until 3(k, z) converges to within
less than a percent over the entire range of (k,z). We
make no assumptions whatsoever about the (k,z) de-
pendence of X,C;. or C. at any stage in the iteration
scheme.

We have carried out the self-consistent calculation out-
lined above for the n = 6 soft-sphere case and the Percus-
Yevick hard-sphere case. The ratio Dp /Dy is once again
found to be universal with a value now of about 0.05.
This is of course a factor of 2 smaller than the observed
value, and we comment on this discrepancy below. We
have not bothered to carry out the full self-consistent cal-
culation for cases other than these two since the single
iteration results discussed above leave no doubt that the
result will be the same.

With the solution to (4) in hand, the remaining re-
sults presented at the beginning of this paper follow.
Some remarks on these are in order. {a) The sub-
diffusive intermediate-time behavior is a natural conse-
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quence of the “self-consistent” nature of the dynamics.
The slowing-down effect of the collective modes builds
in gradually as the tagged particle explores longer and
longer time scales, so that the effective diffusivity is
time dependent, crossing over gradually from its bare
to its (smaller) long-time value. Equivalently, purely ex-
ponentially decaying forms for Cs; and C, are inconsis-
tent with (4). (b) Recall that the tagged-particle den-
sity correlation is related to the particle position R(t)
by Cy(k,t) = (e RMO-ROI) If the probability distri-
bution P[R(t) — R(0)] were Gaussian, we should have
Cs(k,t) = e ¥*W® where W(t) = 1([R(t) — R(0)]%)
is the MSD. On the other hand, defining Wi(t) =
—[In Cs(k,t)]/k?, any k dependence in Wi(t) indicates
that P is non-Gaussian. Figure 3 shows strong k& depen-
dence in Wi(t) at short times. Further, a simple NSC
calculation shows much weaker deviations from Gaus-
sian behavior. It would be of considerable interest to
compare W (t) or individual moments of the distribution
with experiment and simulation, again in a plot versus
t/Tr as defined at the start of this paper. (c) The reason
why our self-consistent theory, unlike the NSC theories,
yields a plot of MSD vs rescaled time plot that agrees
well with experiment should be appreciated. In an NSC
theory, the time scales of the modes contributing to the
self-energy are set by the bare correlation function, so
that all structure in time-dependent quantities appears
at times of order the bare diffusion time 2/Dy. A plot
against a reduced time in units of the renormalized dif-
fusion time will inevitably have all structure pushed to
very short times. In our approach as well as in experi-
ments and simulations, however, all time scales are de-
termined by the renormalized correlation functions, so
that the shape is well predicted by the rescaling used in
Fig. 1. (d) Last we turn to the fact that the calculated
reduction Dy, /Dyq is 0.05, not 0.1. This is a consequence
of the mode-coupling scheme we have used: as in simple
fluids, it will drive the system, if the peak in S(g) is high
enough, into an unphysical “glass” state with Dy = 0,
because of an overestimation of self-consistent feedback
effects [18]. The cutoff mechanism of Das and Mazenko
[16] and Gétze [19], if implemented here as well, might
mitigate the feedback, giving a value of Dy /Dy closer to
0.1.

We summarize by noting that our theory succeeds in
explaining the universal suppression of self-diffusion at
freezing in Brownian systems, predicts a rich crossover
structure in the time domain including subdiffusive and
non-Gaussian effects, all of which should be testable in
experiments, and highlights the importance of the self-
consistent approach in modeling interacting colloids. A
more quantitative discussion of non-Gaussian effects as
well as more details of our calculations will appear in a

longer work [20]. In forthcoming work, we propose to
improve our numerical estimate of the suppression and,
more important, to include the effect of the hydrody-
namic interaction.
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