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Instabihties in Cellular Dendritic Morphogenesis
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Neuronal dendritic arbors grow in a manner consistent with the concept that cytoskeletal

polymerization is catalyzed by the local submembrane concentration of a morphogen believed to be

the calcium ion. Linear stability analysis of such diffusion-controlled growth through voltage-gated

membranes coupled to active extrusion suggests that dendritic arboring will occur provii' the cell is

large enough and the membrane is excitable. Numerical simulations confirm this prediction.

PACS numbers: 87.22.As, 87.22.Fy

Investigations since the times of Ramon y Cajal [1]have

uncovered an abundance of neuronal types, distinguished

mainly by the shapes of their dendritic arbors. More
recently, it has also been suggested that dendritic arbors

exhibit self-similarity over a limited range of scales [2—
4], with a fractal dimension consistent with diffusion-

limited growth [5]. Fractal dimensions dt have been found

for a number of approximately liat neuronal arbors: for
cat retinal ganglion cell dendrites [2,3], dt = 1.68 ~ 0.15
or dt = 1.73, while for mouse cerebellar Purkinje cell
dendrites [4] dt = 1.71, all close to those associated with

two-dimensional diffusion-limited growth.
But if neuronal dendritic growth is a diffusive process,

it is unlike diffusion-limited growth in at least three

regards: (i) the nature of the growth mechanism it-

self; (ii) the fact that cells are bounded by membranes

which may be excitable; and (iii) the existence of active

pumping mechanisms that can admit growth-regulating

substances or extrude them against their concentration

gradients.
First, neuronal growth is a dynamic process in which

both growth and retraction can be observed, in itself at

variance with usual diffusion-limited growth. This growth

is not simply an interfacial process involving membrane

addition. Rather it represents a complex dynamics in

the cell interior in which cytoskeletal polymerization and

depolymerization processes occur [6] involving tubulin,

actin, and other polymers.
There are persuasive indications that these reaction ki-

netics are catalyzed by a diffusive morphogen, and that

calcium ion is such a morphogen, playing a central role
in the regulation of neurite outgrowth [7]. Intracellular

free calcium levels in growing neurons are high in regions
of outgrowth and in motile growth cones [8];neurite out-

growth can be inhibited by treatments that either decrease
or greatly increase the intracellular calcium level [9];and

it is known that growth cones bear calcium channels [10]
that could mediate these effects [11]. On the basis of
these observations, it has been inferred that extension of

the neurite growth cone depends in a bell-shaped fashion

upon its submembrane calcium concentration: Outgrowth

increases as the calcium concentration rises to some op-
timum level, and progressively decreases at higher levels

[7]. To model this bell-shaped dependence of outgrowth

and retraction upon the submembrane calcium concentra-
tion C(s, t) at a point s on the interface at time t, we can

parametrize the growth velocity normal to the surface at

this point as

V(s, t) = V(C(s, t)) + W(t),

where V(C(s, t)) = k|C(s, t) —k2C(s, t)t, and k~ and k2

are lumped rate constants for the growth and retraction

mechanisms, respectively, while the magnitudes of ct

and P rellect the cooperativity of these polymerization
mechanisms' dependence on calcium. The term W(t) is

chosen so that the global addition of material to the cell is

constant in time.
Second, the membrane may be excitable. Biologi-

cal membranes can be considered to be phospholipid

bilayers covered by ionic channels created by mem-

brane spanning proteins whose conformation depends

on the trans membrane potential @. In the resting

state this transmembrane potential is nonzero, typi-

cally at a potential of about P„„,= —60 mV with

respect to the exterior because of the disparity in

ionic concentrations on the two sides of the membrane

([Na+]„,= 140mM, [Na+];„=10mM; [K+],« = 4mM,

[K+];„=120mM; [Cl ],„,= 120mM, [Cl ];„=12mM;
[Ca++],„,= 2mM, [Ca++];„=10 4mM or 100nM)
This resting potential is set mainly by K+ because of
its high permeability: K+ ions will tend to diffuse

down their concentration gradient out Of the cell leaving

a submembrane concentration of negative ions, and

consequently a negative resting potential at the Nernst

equilibrium. As the membrane depolarizes (becomes
less negative), the voltage-gated ion channels open. As

the transmembrane potential is itself a nonlinear function

of the ionic concentrations in the internal and external
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domains, this can result in an effective diffusive mor-

phogen current jd'ff(C(s)) which increases with the local
submembrane morphogen concentration C(s). A positive
feedback mechanism for cytoskeletal polymerization
would thus exist which, we argue, leads to dendritic
cellular growth.

For real biological membranes the transmembrane po-
tential is set by all the ionic concentrations. The instabil-

ity can, however, be discussed in the context of a simpler
situation where the resting potential is modulated mainly

by the submembrane morphogen concentration C(s) taken
to be the Ca++ ion, and therefore electrical potential varia-
tions @(s)across the membrane reflect these internal ionic
morphogen variations. For example, suppose the local
ionic calcium flux into the cell is approximated by the
Ohmic form

jditt(4(~)) = g(4 (~))[4N (&) 4'(&)]/q. (2)
where g(P) is the voltage-gated calcium conductivity;
Pn, (s) = (kT/q) ln[C,„,/C(s)] is the local Nernst poten-
tial for calcium in terms of its charge q and concentrations
C(s) inside and C,„,outside the cell (taking the outside of
the cell to be well mixed, an assumption in accord with the
observation that normal development appears in neurons
grown in vitro in the presence of well mixed external
media). The transmembrane potential is then approxi-

0 = [gi4 ~ + g(4 (~))4 N (~)]/[gl + g(4'(~))]
lumping together all contributions from the other ionic
fields into a leakage conductivity g& and a resting potential

From these equations one can show that pro-
vided the inequality Bg/8$ ) [g~ + g($)]2/gt(P«„+
pN, ) is obeyed, 8jd' ff/ac & 0 and a positive
feedback mechanism exists.

Third, active pumping of ionic species against their dif-
fusive gradients is a necessary condition for living cells
to exist (otherwise death would occur on diffusive time
scales). Specifically the internal cellular calcium concen-
tration [Ca++];„=100nM in the resting state is about 4
orders of magnitude lower than the external concentra-
tion [Ca++],„,= 2ntM. Such gradients can only be main-
tained by energy (ATP)-dependent pumping mechanisms
which experimentally are found to be highly nonlinear,
and to a good approximation sigmoidal [12] functions of
the local ionic concentrations. For calcium, active pump-
ing sets in when the internal calcium concentration rises
to a critical value C„;,= 1000nM, and therefore we may
parametrize the pumping locally as

J „(C(s))= j,„/(1+ exp([C„;,—C(s)]/hC)) . (3)
Combining these observations, the assumption in this

Letter is that the rate of cellular dendritic growth is de-
termined locally by the internal submembrane concentra-
tion of a diffusible morphogen C(s), assumed to be the
calcium ion, which is involved in the catalysis of cyto-
skeletal polymerization and depolymerization kinetics. Its
concentration, in the quasistatic approximation, involves
the solution. of Laplace's equation V C = 0 subject to bio-

logically plausible boundary conditions for the morphogen
flux which can be found by equating the diffuse flux just
internal to the cell to the total flux by all mechanisms
through the membrane

DV—C(s) = j(C(s))n(s). (4)
Here j(C(s)) = jd'ff(C(s)) —j~„~(C(s))is the total flux

through the membrane due to both diffusion jd'ff(C(s)),
a function of the submembrane calcium ion concentra-
tion which modulates the local conductivity and electro-
chemical gradient across the cell membrane such as
Eq. (2), together with is active extrusion by pumping

j~„~(C(s))against that gradient given by a form such
as Eq. (3), while n(s) is the local normal into the cell at
a point s. A drift contribution trVQ to the total flux has
been neglected [Io.V@/qDVC(s)I —q4@/kT] in Eq. (4)
as the typical spatial variation in transmembrane potential
across the cell hP is small (a few mV) compared to the
diffusive contribution.

Dendritic growth requires a spatially varying mor-

phogen concentration. This could occur in one of two
ways in an initially circular or spherical cell. Either sur-
face fluctuations perturb the morphogen fluxes through
the membrane resulting in submembrane concentration
fluctuations which lead to unstable growth, or a con-
stant ionic concentration inside a growing cell is unstable
in the presence of a voltage-gated membrane leading to
spatially inhomogeneous concentrations, and endogenous
currents (the Pelce instability [13]);if these currents are
morphogens, dendritic growth may result.

Consider first the case of the surface instability. To
study its linear stability we use the geometric approach
introduced by Brower, Kessler, Koplik, and Levine [14]
for the motion of curved fronts, generalizing the dynatnics
to the case of excitable membranes growing in response to
a morphogen field C(s, t). The local curvature ~(s, t) of
the membrane at a point s on the membrane surface will
change with time as

dK(s, t)/dt = —[a'/as' + ~'][V(s, t) + yB ~/Bs ],

with an effective growth velocity V(s, t) which we take
to be dependent on calcium in a bell-shaped man-
ner such as Eq. (1). We have also included an ef-
fective membrane rigidity [15] using the free energy
F„g,d = y fp ds(Ba/Bs) which will discourage noncir-
cular growth, and whose value reflects not only the bend-
ing rigidity of the phospholipid membrane but is also set
by the rigidity of the internal cytoskeleton.

The unperturbed growth is taken to be circular, in
which case ti(s, t) = Rp(t) ', and the unperturbed growth
is simply Rp(t)2 = Rp(0)~ + kt from conservation of
mass, where k is proportional to the global rate of
cytoskeletal polymerization. Assume a spatially homo-
geneous morphogen flux j is flowing through the mern-
brane. Then the internal morphogen concentration during
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this unperturbed growth is Co(», t) = C'(Ro) in(»/a),
where C (Ro) is the solution of the implicit equation
DC'(Ro)/Ro =j (C'(Ro) In(RO/a)). Here we have as-
sumed that internal buffering keeps the morphogen
concentration at very low levels, C(a) = 0, close to the
center (» = a) of the cell. To look for the linear stability
of these growing circular solutions, we infinitesimally

perturb the surface

R(8, t) = Ro(t) + g 6„,(t) cos(m8),
I~i= I

where 0 is the azimuthal angle. In turn these surface
fluctuations perturb the calcium concentration, which to
first order in these perturbations can be written

oc

C (», 8, t) = C'(Ro(t)) In(»/a) + g a (t)[B (t)/Ro(t)]cos(m8)[(»/a) —(»/a)™]
l m=1

R;„=2D/(Bj /&CO) (9)
before dendrites can emerge.

The thickness of emerging dendrites can be estimated
from the most unstable modes as

r = {[y/C (R 'n)]8V/tiCO[1 + (ROID)~J/8COB (10)
and is set by an interplay of membrane rigidity y which
tends to thicken the outgrowths and the increase in

growth rate with morphogen concentration 8 V(Cp)/&CO )
0 which must be positive for cellular dendritic morpho-
genesis to occur, and also thins them. We also suggest
that the ratio R;„/ggives an order of magnitude estimate
of the maximum number of dendrites that the growing cell
can elaborate.

A second mechanism follows from the fact that an

initially constant morphogen concentration C& [the so-
lution of j(Ct) = 0] can become unstable [13] to con-
centration fluctuations if Bj/BC& & 0, and indeed the
mode BC(», 8, t) = c (t)[r/Ro(t)] cos(m8) becomes un-

stable when Rp = Dm/(Bj/BC~), resulting in endoge-
nous morphogen currents. As a result of such spatial
inhomogeneities dendritic growth results, dB /dt = (1—
m2)[B m2y/Ro + c BV/BCt] As den. dritic growth first

appears for m = 2, a similar form for the instability con-
dition R;„=2D/(Bj /BCt) is found for this case also.

For simulations, we discretize our equations on a lat-
tice. This results in three types of lattice points: internal
domain points, external domain points, and a set of
contiguous points representing the membrane. A Jacobi
relaxational procedure, together with the boundary condi-
tions given by the sum of the diffusive and pumped Auxes,

yields the equilibrium concentration at each internal lat-

with a (t) = [D/Ro(t) + 8j/BCO](Ro/a) /[ID/Ro-
8j /8C0] provtded Ro/a )) 1 and (dC'/dRo)/C'
1/Ro. Substitution of these expressions into Eq. (5)
results in the growth of the perturbations as

dB /dt = (1 —m )8 [m y/Ro + X], (8)
where X =—[C'(Ro)/Ro]BV/BCO{1 + [1 + (Ro/D) 8j /BCO]/
[m —(Ro/D)Bj/&CO]) An .examination of Eq. (8) re-
veals some of the important factors influencing cellu-
lar dendritic growth. The membrane must be excitable
BJ/&CO ) 0; indeed the neuron must achieve a minimum
size

tice point. The membrane is treated as a discrete linked
list of data structures, containing information on the lo-
cal submembrane calcium concentration and therefore on
the local growth velocity V; = V(C;) at a point i on the
neuronal surface. All sites with V; & 0 are retracted. A
stochastic growth rule is then employed at each time step,
with the probability P; = V;/V, „

that growth occurs. If
one of these sites is not chosen to grow, then the probabil-
ity of retraction is chosen so that on the average a constant
global addition of material to the cell occurs. Whether
growth or retraction actually does occur with these prob-
abilities is constrained by the demands of topology, rigid-

ity, and hard core repulsion —approach of processes closer
that the diameter of a growth cone with filopodia was dis-
allowed. If growth or retraction is allowed (no pinch-

ing off of membrane and resulting local curvature not
too large), then the membrane lattice point in question
is replaced by an internal (growth) or external (retrac-
tion) domain point, and any resulting break in membrane

contiguity is mended.
Simulations of Eqs. (1)—(4) in voltage-gated vesicles

can be seen in Fig. 1 for both u = 0 (calcium indepen-
dent growth) and u = 1 (calcium catalyzed growth), start-

ing from small circular domains with low internal calcium
levels. Morphogen independent cellular growth gives rise
to no dendritic arboring, the morphology being similar
to Eden growth, and the internal calcium concentration
remaining at low levels. For calcium catalyzed growth,
however, a diffusive influx occurs at random protuber-

FIG. 1. The influence of the morphogen on cellular dendritic
growth in growing voltage-gated vesicles. Growth has been
rendered calcium independent a = 0 in the left image, while
calcium-dependent growth (n = I) is shown right.
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ances which grow allowing further influx. When the in-
ternal calcium rises to =C„;„activeextrusion sets in.
Quasistatically the morphogen concentration equilibrates
into a spatially inhomogeneous form. As the diffusive
influx of calcium is larger at the tips of dendrites than
elsewhere because of their larger surface to volume ra-
tio, a higher calcium concentration can be expected in the
dendrites, and this is indeed observed in both the sim-
ulations (see Fig. 1) and experimentally in the large in-

tracellular calcium gradients seen along growing neurites
of mollusc neurons in vitro [8]. This higher concentra-
tion induces further cytoskeletal polymerization resulting
in cellular dendritic growth.

In conclusion, note that for both mechanisms voltage-
gated membranes are required, and in both cases the
mechanisms are stabilized by internal morphogen diffu-
sion. This is in direct contrast to the Mullins-Sekerka
instability where external diffusion enhances the instabil-
ity. We have focused in this paper on calcium ion modu-
lated neuronal growth, but it should be kept in mind that
the calcium ion have been implicated much more broadly
in morphogenesis, including regulation of cellular vis-
coelastic properties [16]. Another influence on gross cel-
lular morphology is osmotic pressure hp = p;„—p,„t.
This can be seen in the variation of shape or cyto-
type exhibited by membrane vesicles such as red blood
cells with osmotic pressure [17]: swelling into spherical
forms as Ap ~ and shrinking into forms resembling
branched polymers as hp —~. This class of mor-
phological changes is distinct from the mechanisms of
dendrite growth, though the cytoskeletal scaffolding will
constrain the influence of osmotic pressure on form.
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