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Composite-Fermion Picture for the Spin-V4ve Kxdtation in the Fractional Quantum
Hall System
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The spin-wave excitation mode from the spin-polarized ground state in the fractional quantum Hall
system at the Landau level filling of v = 1/(2m + 1) is shown, by comparing with the exact numerical
result for finite systems, to be accurately described, for wavelengths exceeding the magnetic length, in
terms of the composite-fermion picture for the spin-wave (magnon) theory formulated in the spherical
geometry. This indicates that the composite-fermion approach extends to excited states and also
provides the spin stiffness in terms of exchange interaction with transformed interparticle interactions.

PACS numbers: 73.40.Hm

Although it is more than a decade since the fractional
quantum Hall (FQH) effect [1] was discovered and
identified as a novel prototype of a strongly correlated
electron system, a new way of looking at the problem
is now being explored in terms of the composite-particle
picture, or the Chem-Simons (CS) gauge field theory.
Specifically, much attention is focused on the composite-
fermion (CF) picture, which was first proposed by Jain [2]
as an alternative to the Haldane-Halperin hierarchy, while
the bosonic CS theory is also developed [3].

The CF picture asserts that a quantum Hall liquid
of electrons in an external magnetic field B„, corre-
sponding to the Landau level filling of v = p/(2mp +
1) (m, p:integers), is equivalent, in a mean-field sense,
to a liquid of composite fermions each carrying 2m Aux

quanta, immersed in the effective magnetic field B,ff —=

8 —B]~2, which corresponds to v = p. This was shown

by Lopez and Fradkin in terms of the fermionic CS gauge
theory, and the response functions and excitation spectra
were also calculated within the random-phase approxima-
tion (RPA) [4].

The fermionic CS theory has been worked out by
Halperin, Lee, and Read to show that the (spinless)
system can indeed be thought of as a "Fermi liquid" of
composite fermions near v =

2 [5]. This was confirmed

by some recent experiments on Fermi-liquid-like transport

properties around v =
2 [6]. Specifically, the transport

around v =
2 does indeed resemble the usual Shubnikov-

de Haas oscillation with the energy gap d ~ B,ff [7],
for which the ef'fective mass of the composite fermion
was subsequently estimated [g]. These results are rather
surprising, since there is no a priori reason why the CF
picture, starting from a mean-Geld approximation, should
be a good approximation.

There are a number of attempts at justifying the CF
mapping. These include a study of the overlap between
the exact eigenstates and the projected CF trial wave
functions [9],where the overlaps turned out to be reduced
for the states having similar energies with the same
quantum number, or Chem-Simons calculations in the

modified RPA for the excitation spectra, which account
for the effective-mass renormalization within a Landau-
Fermi-liquid theory approach [10]. Although the modified
RPA is expected to be accurate in the large p(v ~ 1/2 m)
limit, where the motion of composite fermions becomes
semiclassical, the approximation contains the effective
mass of a composite fermion as a free parameter and only
gives a qualitatively correct description of the excitation
spectra for small p.

Now, we consider that a true test for a many-body
theory is its ability to describe excited states. For
the filling factor of v = 1/(2m + 1), the ground state
(Laughlin's quantum liquid) is fully spin polarized due
to the electron correlation even when the Zeeman energy
is neglected. Then the low-lying excitations are the
collective spin-wave mode that restores the broken SU(2)
symmetry (rotational symmetry in spin space). Thus a
prominent question is: Can we extend the CF picture
to ferromagnetic spin-wave excitation spectra? In this
Letter we present the first parameter-free calculation of
an entire collective mode (spin wave), based on the CF
interpretation. This does not need procedures such as the
lowest-Landau-level projection of the wave function and
is characterized by a quantitative agreement with the exact
numerical results.

While the usual practice in studying the FQH system
is to ignore the spin, the spin degrees of freedom are in
fact fascinating, since a most drastic effect of electron
correlation in the ordinary correlated system (e.g., the
Hubbard model) is the spin state, which is thought of
as a manifestation of the exchange interaction in the
appropriate basis. This usually involves the competition
of kinetic and interaction energies, which causes singular
behaviors in the spin-wave dispersion when the ground
state is spin polarized due to electron correlation [11].
In the FQH system, by contrast, the intra-L;mdau-level
excitations such as the spin wave are dominated solely
by the Coulomb interaction due to the quenched kinetic
energy. The spin wave has recently been experimentally
observed with inelastic light scattering at v = —, [12].
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Here the spin-wave (magnon) theory for the FQH
system is formulated in the spherical geometry to exploit
the 1otational symmetty [13]. We shall show tliat the
spin-wave excitation spectrum for v = 1/(2m + 1), when

compared with the exact spin-wave excitation numerically
obtained from the diagonalization of 5nite FQH systems,
is explained surprisingly accurately by a CF picture
with a mean-Geld approximation unless the wavelength
is smaller than the magnetic length. One quantitative
outcome is that this approach enables us to look at the

spin stiffness in the FQH system in terms of an exchange
interaction with transformed interparticle interactions.

%e start from the spin-wave excitation spectrum for the
flat geometry at v = 1, which has been exactly given by
Kallin and Halperin [14]as

~(k) —&»B = f ~«V(&) [1 —J.(k&1')].
2W Jo

( 1)2s-J tS S L
ASS J

where L (= 0, 1, . . . , 2S) is the total angular momentum,

{szJ) is the 6j symbol arising from products of four
Clebsch-Gordan coefficients, and V& is the Haldane pseu-
dopotential for the relative angular momentum 2S —J
[15j. »nce {ssj ) = (—1) /(2S + 1), the excitation en-
ergy at k = L/R = 0 satisfies the relation coo ——g~iiB foi

(1)
where V(q) = 2me2/eq is the Fourier transform of the
Coulomb interaction with e being the dielectric constant,
Jo(z) Bessei's function, and I = gdi/eB the magnetic
length.

If we now turn to the spherical geometry, everything
can be written in terms of angular momentum quantum
numbers. As we stereographically map the flat system to
the spherical one, the translational symmetry is translated
into the rotational symmetry, so that the wave number k

and total angular momentum L are related by k = L/R,
where R is the radius of the sphere. When the total
magnetic flux going out of the sphere is 2S (an integer
due to Dirac's condition) times the flux quantum, the
radius of the sphere becomes R = /~S, while the re-
lation to v is 25 = v 'N, which is an integer with N the
number of electrons. There the creation operator for the
magnon with anplar momentum L and its z component
M is given by CL~ ——g, k(

—1) "(S,j;S, k[LM)a, &ali, —
where (S,j;S, —k(LM) is the Clebsch-Gordan coefflcient
and a, is the creation operator for jth spatial orbit with
spin o..

The spin-wave excitation spectrum coL, which is now a
function of L, in the spherical geometry requires a tedious
calculation, but the result is rather elegant in that it is
given in terms of Wigner's 6j symbol, familiar in nuclear
physics. Namely we have for v = 1

ruL —SPaB = g(2J + 1) (—1) VJ
J=0

1
X 2S+1

any interparticle interaction ({VJj), which guarantees Lar-
mor's theorem.

Now we apply Jain's composite-fermion picture by
attaching 2m Aux quanta extracted from the external field
to each electron in the v = 1/(2m + 1) state. When
the 2m Aux quanta are attached, the relative angular
momentum n between two electrons translates into the
relative angular momentum n —2m between composite
fermions [16], since an extra phase factor e2 8' appears
in the wave function of the relative motion (as often
described in terms of the CS theory in the literature).
Since the field is reduced to B,rr = B/(2m + 1), the
magnetic length I changes into l = $2m + 1 I in a mean-
field sense.

%e are now in position to formulate the spin-wave
excitation at v = I/(2m + 1). The advantage of working
in the spherical geometry is that the transformation into
the CF picture is simply given by

2S = = N 1
2$ (n —2—m) 2s —n (3)

V-
2m + 1 8 /El & /&I

where V2~ „ is the pseudopotential with the relative angu-
lar momentum n = 2$ —J. If we plug this transforma-
tion into the "6j formula, "Eq. (2), we finally arrive at the
desired expression for the spin-wave excitation spectrum
for v = 1/(2m + 1) in the CF picture as

2$

~L —zI aB = g(2J + 1) (—1)" 'VJ
J=O

1
X 2$+ 1

)2S—J [S S L1
1S S JJ

(4)

where the range of L is now reduced to L = 0, 1, . . . , 2S.
We now turn to the numerical results for the low-

lying excitations in the spherical geometry for a six-
electron system at v =

3 and for a five-e/ectron system
at v =

5 in Fig. 1, where we show both the one-spin-
flip excitations (with the change in the total spin b S„, =
—1) and the charge (ES„, = 0) excitations. In the spin-
wave mode, which is the lowest branch in the excitation,
we immediately recognize that the states in these finite
systems appear only in the range 0 ( L ~ 2S = N—
1, while naively there is no reason why the states
should not extend for 0 ( L ~ 2S = (2m + l)(N —1).
In fact, higher-energy spin excitations do indeed exist
for larger L in Fig. 1. We attribute this truncation from
(2m + 1)(N 1) to N —1 to the fa—ct that the original
system at v = 1/(2m + 1) may be mimicked by a system
of composite fermions with s = 1 for the spin-wave
excitation.

If we look at the spin-wave dispersion curve in Fig. 1,
the prediction from the composite-fermion mean-field
approximation (CFMFA), Eq. (4), exhibits an excellent
agreement with the exact result up to the wave number
k —I '. The exact result starts to deviate from the
CFMFA for larger k, which implies that the effect of
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To look into the size dependence of the results for
the spin-wave excitation, we have calculated the CFMFA

l
result for a larger 51-electron spherical system at v = —,

(Fig. 2). According to the single-mode approximation
(SMA) for the spin-wave excitation spectrum for v = odd
fractions [17], the spectrum is given as

l
cu(k) —gljsB = dq qV(q) [1 —Jo(kql )]2'' 0

X [1 —S(q)],
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with S(q) being the static structure factor for the fully
polarized odd-fraction ground state. The SMA is known
to agree with numerical results for finite systems for
small wave numbers within the finite-size correction [18].
Here we have plotted for comparison the SMA result
for an infinite (flat) system [19] along with the exact
diagonalization result for a five- (six-) electron system.
We can see that all of the exact CFMFA and SMA
results agree with each other for wave numbers up to
k —I '. The exact result for the finite system for k & l

is slightly larger than the other ones. This we consider
comes partly from a finite-size correction: The Haldane
pseudopotential becomes larger for finite systems than
that for an infinite system (by about 5%%uo for the present
size) [15]. Thus the agreement of the CFMFA result
persists for larger systems. For k & I ', the SMA result
which is intended for long wavelengths [17], the finite-
system result, and the CFMFA result start to deviate from
each other.

FIG. 1. The excitation spectrum for a FQH system of spin

2 electrons, which comprises one-spin-flip (hS„, = —I) exci-
tations (open circles) and charge (b,S„, = 0) excitations (solid

squares), is shown for (a) a six-electron system at v = —, and

(b) a five-electron system at v =
5 (note a difference in ver-

tical scales). The result for the spin-wave excitation in the
composite-fermion mean-field approximation for the same num-
ber of electrons is shown by crosses. The spin-wave and charge
(magnetoroton) excitations are, respectively, connected by a
curve as a guide to the eye.

fluctuations from the mean CS field becomes appreciable
for large-wave-number excitations. The higher-energy
spin excitations above the spin-wave mode, which have
no counterparts for v = l, should also be dominated by
the fluctuations and may be associated with inter-(quasi-
)Landau-level excitation of the composite fermion with

spin flip.
The result that both the range of discrete modes in a

finite system and their dispersion agree with the prediction
from the CFMFA confirms the picture that the CF picture
is valid not only for the ground state but also for the spin-
wave excitation. This is the key message of the present
Letter.

0—
I

0

FIG. 2. The spin-wave excitation spectrum for a FQH system
lof spin —, electrons at v = —, is shown. The exact result

for a five- (six-) electron system is indicated by solid (open)
circles. The results for a 51-electron system in the composite-
fermion mean-field approximation in the spherical geometry
(solid triangles, connected by a curve as a guide to the eye)
and the single-mode approximation for an infinite (flat) system
(solid curve) are also indicated.
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As for the stiffness of the spin wave [D in

to(k)/(e /el) = D(kl)2 for small k], this can be esti-
mated either numerically from the 6j formula for large
systems or by transforming the electron-electron inter-

action via Eq. (3) in the Kallin-Halperin formula for an

infinite system, Eq. (1), to have

V(q) = 2m l g 2V„L„(q l )
n=0

.- 2n. l g " L„(q l ), (6)„0/2m+1
where L„(z) is Laguerre's polynomial and V„ is the

pseudopotential for the relative angular momentum n [15].
The stiffness is thus expressed in terms of a peculiar
"exchange interaction" for the composite fermions with

the shifted relative angular momenta. Specifically, we can
see the spin stiffness significantly decreases as we go from

1 1

v = 1 down to 3, 5, . . . , since V(q) becomes progressively
reduced. The numerical values of the spin stiffness at
these fillings are of interest as an input into the effective
magnetic actions due to Sondhi et al. [20] and Yang
et al. [21] and will be given elsewhere [22].

We also note that, while in the SMA the effect of going
from v = 1 to 3 appears only via S(q) [or equivalently
the radial distribution function g(r)] in Eq. (5), our

approach is to make the flux attachment directly affect
the interparticle interaction [Eq. (6)], where an exact g(r)
is used in the system after the transformation [Eq. (1)].

As for the spin excitations other than one-spin flips, we
can show that all the low-lying excitations at v = 1 can
be entirely interpreted in terms of the multiplets of weakly
interacting magnons, where the intermagnon interaction is
attractive at short distances [13]. This is consistent with
Rezayi's observation that the two-spin-flip mode has a
lower energy than that of the one-spin-flip mode at v = 1

[23]. Sondhi et al. went on to discuss the many-spin flips
in analogy with a Skyrmion [20]. It is an interesting
problem to ask the applicability of the composite-particle
picture to these multispin-flip excitations.

We also notice in Fig. 1 that the rotonlike charge-
excitation mode [24] exists as well, identified as a
AS„t = 0 dispersion with an energy gap. Extension of
the composite-particle picture to charge-excitation modes
provides another interesting future problem.
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