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Sc:ln~iag Te~~eling Mcromopy Study of the Thick Film Limit of Kinetic Roughemng
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The spatial and temporal scaling behaviors of vapor-deposited silver films have been investigated by
means of scanning tunneling microscopy for the film thickness range =10—1000 nm. The roughness,
growth, and dynamic scaling exponents have been independently measured (a = 0.82 ~ 0.05, P =
0.29 +. 0.06, and z = 2.5 ~ 0.5), and they exhibit no evolution with film thickness.

PACS numbers: 68.55.Jk, 64.60.—i, 68.90.+g

A wide variety of surfaces and interfaces occurring in
nature are well represented by a kind of roughness associ-
ated with self-affine fractal scaling, defined by Mandelbrot
in terms of fractional Brownian motion [1]. %hether sim-
ilar surface morphologies formed by distinctly different
physical processes have in fact common basis is a ques-
tion which remains unanswered. The area of nonequilib-
rium Nm growth, and the surface roughness associated
with it, shows great promise for iBuImnating this issue.

All rough surfaces exhibit perpendicular fiuctua-
tions which are characterized by an rms width cr =
(z(x, y) )'~;z(x, y) = h(x, y) —(h(x, y)), where h(x, y) is
the height function and (. .) is the spatial average over
a planar reference surface. Films grown under nonequi-
librium conditions are expected to develop self-affine
surfaces [2], whose rms widths scale with time t and the
length L sampled as [3]

cr(L, t) = L F(r/L iP)

where o(L) ~ L fo. r t/L ~& ~ and o.(t) ~ r& for
t/L ~I 0. The parameter 0 ~ u ~ 1 is the "static
scaling, " or "roughness" exponent [4], and the parameter

P is the "growth" exponent. Actual self-affine surfaces
are characterized by an upper horizontal cutoff to scaling,
or correlation length g, beyond which the surface width
no longer scales as L, and eventually reaches a saturation
value o. Implicit in Eq. (1) is a correlation length which
increases with time as g ~ t'~', where z = a/P is the
"dynamic" scaling exponent.

Theoretical treatments of nonequilibriurn film growth
typically employ partial differential equations involving
phenomenological expansions in the derivatives of a
time dependent height function h(x, y, t). The Kardar-
Parisi-Zhang (KPZ) equation [5] is one well-known
example of this approach where there is a consensus
between continuum theory and numerical simulation,
yielding ix = 0.3—0.4, P = 0.24—0.25 for growth on
a two-dimensional surface [6]. The KPZ equation
docs not conserve particle number, and so it apphcs
to cases where desorption and/or vacancy formation,
but not surface diffusion, are the dominant surface
relaxation mechanisms. In efforts to rcalisticaHy treat

surface diffusion, a number of conservative continuum
equations have been proposed [7]. The various mod-
els predict distinctly different values for the scaling
exponents and frequently predict "crossover behavior"
for the exponents, i.e., an evolution in their values
with film thickness [8—10]. Investigating whether the
exponents evolve with film thickness is clearly in order,
since firm evidence for their evolution would imply
reevaluation of most, if not all, prior experimental work
in this area.

Previous experimental investigations which have re-
ported values for both n and P [11—15] have generally
not reported their thickness dependence or their asymp-
totic values. You er al. [11] measured a for one film
thickness and one deposition condition, while Thomp-
son et al. [12] measured u with precision too low to
establish a thickness dependency. He et al. [13] and
Ernst et al. [14] studied films too thin to establish asymp-
totic values. %e report here a scanning tunneling mi-

croscopy (STM) study of the thickness dependence of
all three of the scaling exponents, for vapor-deposited
Ag/quartz. By independently measuring a and o for
each thickness studied in the range =10—1000 nm, we
have established asymptotic values and ruled out any
thickness dependencies of the scaling exponents. By mea-

suring g for each film thickness studied, we have obtained
an independent measure of the dynamic exponent z and
confirmed the relation z = u/P. Finally, by measuring
roughness amplitudes in addition to the scaling exponents,
we have documented some basic consistencies of the ex-
perimental results with theories to which they are being
compared.

The Ag Alms studied here were deposited onto quartz
in 8 dcpos1t1on system prcvlously employed for x-ray
refiectivity studies of Ag/Si [12]. These, along with

previous adsorption studies of Ag Alm growth on quartz

[16], rule out any significant discrepancies in the surface
area detected by the various tcchmques, con5rming that

tip curvature effects can be neglected. For example,
the rms width of a 73 nm thick silver film determined

by x-ray refiectivity measurements (3.0 nm) is within

experimental error of that determined by STM (3.2 nm)

[12]. Typical slopes for the film surfaces obtained by
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STM are on the order of 10 deg, or approximately a
1.5% increase in surface area of the film with respect
to that of a planar surface. This agrees with adsorption

measurements, which indicated planar surfaces within

the resolution of the technique [16]. The x-ray and

adsorption results establish that bulk vacancies and/or
surface overhangs are negligible, so that surface diffusion

of the incoming Ag atoms is the only viable relaxation

mechanism. The deposition nonetheless occurs under

nonequilibrium growth conditions, since surface diffusion

of Ag is clearly limited at room temperature [17].
The films were produced by thermal evaporation of

99.999% pure Ag at normal incidence, 10 7 —10 s Torr
and 0.03 nm/s onto an optically polished quartz substrate,

which was cleaned between depositions. The parameters

a, g, and o were obtained from STM images recorded in

dry N2 with a Digital Instruments Nanoscope II, at grid
density 400 x 400 (I = 0.75 na, V = 50 mV). Typical
images are displayed in Fig. 1.

Two analysis approaches are presented in Fig. 2, for
a sample which is represented by circles at h = 208 nm

in Fig. 3. The first approach involves the correlation
functions g(R) = ([z(x', y') —z(x, y)] ) and C(R) =
(z(R)z(0)) = oz —g(R)/2;R = Q(x —x') + (y —y')
where the average is taken over pairs of points which

are separated horizontally by the length R. If the
surface is self-affine with a finite correlation length,
then g(R) ~ Rz as R 0 and g(R) = 2oz as R
Correlation data were obtained from five 700 x 700
(nm) images recorded at random locations and then

averaged. The value for g was obtained by assuming the

analytic form for the height-height correlation function

[18], C(R) = crze +~~~", where C(g) = C(0)/e. The
exponent e was obtained from the slope of a log-log plot
of g(R) vs R in the range 0 & R ( 0.4$. The value for
o was taken from scans where L ~ 20$. For the data
presented in Fig. 2, this procedure yielded g = 24 nm,

a = 0.84 ~ 0.06, and o = 2.88 nm.
The inset to Fig. 2 depicts a second analysis approach

which involves direct measurement of the surface width

as a function of scan size. The exponent a is obtained
from the scaling behavior of o(L) for L ( g, and cr is
taken from scans where L ~ 20$. In order to assign
a correlation length to the data, an analytic form for
o(L) must be assumed. Taking the film thickness h to
be directly proportional to the deposition time t, and
defining x = h/L ~&, two forms for o(L, t) which satisfy
the dynamic scaling conditions Eq. (1) are

o~(L, h) = L A~(1 —e ""); gi = A2 hp, (2)

with o.i(L) = AiL for x ~ and o.i(lt) = AiA2h& for
x~0, and

BixI'
o2(L, h) =L; g2 = h~~,

(1 + B,x»~~)~~'

FIG. 1. Typical STM images for film thickness (top to
bottom) h = 50.2, 147, 280, and 702 nm. The horizontal and
vertical axes, respectively, range from 0 to 650 nm and 0
to 70 nm, so vertical fluctuations are magnified by approxi-
mately 3.

with oq(L) = BiB2 L for x ~ and o2(h) = BihP
for x 0. These functions are represented by dashed
(o.i) and solid (cr2) lines in the inset to Fig. 2, where the
values for o; and P are listed in Table I. The function
tr2(L, h) provides the better description of the data and in
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I TABLE I. Summary of experimental results. All lengths are
in nm (1 nm = 4.3 layers). Data represented by squares are the
primary results of this study.
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u/P
g(h)
h/L ~i

h/L ~~ 0

Fig. 3, squares

30—700
0.82 ~ 0.05
0.29 ~ 0.06
2.5 ~ 0.5
2.8 + 0.6
g(h) = 5.3th" ~'

o.(L) = 0.06L '
o(h) = 0.956h

Fig. 3, circles

16—900
0.85 ~ 0.09
0.376 ~ 0.007
3.6 ~ 0.3
2.3 ~ 0.25

$(h) = 5.5h" i"

o(L) =.0 09L""'.
o(h) = 0.385h"-""

addition has an analytic form for C(R) to which it can
be mapped [19]. The correlation length gz = 22 nm ob-
tained from crz(L, h) is close to g = 24 nm. Both are on
the order of the film's crystalline ~ain size, as determined
from x-ray diffraction measurements [20].
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FIG. 3. Experimental results for two slightly different deposi-
tion conditions (see text) for the rms width o., the roughness ex-
ponent o, and the correlation length $ vs film thickness h. Data
represented by squares are the primary results of this study. All
solid lines represent least squares fits to the data, yielding the
growth exponent P and the dynamic exponent g. (Values for g
represented by circles at h = 16 and 131 nm were not included
in the line fi.)
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FIG. 2. Correlation g(R) data for a 208 nm thick sample. The
roughness exponent n = 0.84 ~ 0.06 is obtained from a power
law to fit to data in the regime 0 ~ R ~ 0.4$, where R is the
horizontal separation between pairs of points. The solid line
has slope 2u. The inset presents rms width vs scan size o.(L)
data for the same film, fit to Eqs. (2) (dashes) and (3) (solid).

The width vs scan size approach can easily be applied
to samples which exhibit scaling over many orders of
magnitude and is limited in precision only by the number
of images which are averaged [21]. For the samples
studied here, where g was limited well below that of
the image size analyzed, the correlation analysis was
quite suitable for determining all three parameters o,
a, and g. The values reported in Fig. 3 and Table 1

were obtained in this manner, since it involved fewer
images. All points in Fig. 3(a) have been corrected for
the rms width of the quartz substrate, o.q„„„=0.6 nrn,
according to o.„„„d= (o.2 —oz„„„)'/2,affecting the
reported values of P by less than 0.02. The squares in

Fig. 3, and the second column of Table I are the primary
results of this study.

We observe the exponents a = 0.82 ~ 0.05,
P = 0.29 ~ 0.06 and z = 2.5 ~ 0.5 to be constant
to within experimental error, for all thicknesses studied.
Since the error margins are narrow enough to rule out
significant changes in their values before reaching rnacro-
scopic dimensions (if the data were extended further by
two decades, the film thickness would be 0.1 mm), the
exponents have arguably reached their asymptotic limits.
Our values are close to those reported for Ag/Si at 300 K
(P = 0.26 + 0.05; n = 0.70 ~ 0.10) [12], Fe/Si(111)
at 323 K (P = 0.25 —0.32) [22], Fe/Fe(001) at 343 K
(P = 0.22 ~ 0.02; u = 0.79 ~ 0.05) [13], Cu/Cu(100)
at 160 K (P = 0.26; a = 1) [14] Au/glass at 300 K [23]
(u = 0.89 ~ 0.05 for L ( 38 nm) and CuCl/CaFz(111)
at 373 C [24] (a = 0.84 ~ 0.05). Although none of
these experiments tracked the evolution of the scaling
exponents towards asymptotic limits, our results would
indicate that the exponents may be taken as asymptoti-
cally limiting values.

While it is clear that a broad range of homoepitaxial
and heteroepitaxial growth conditions (but certainly not
all) yield scaling exponents in the range P = 0.2—0.3,
and a = 0.8—0.9, we do not wish to de-emphasize the
importance of deposition details. We therefore include a
data set (Fig. 3, circles) recorded in identical conditions
to that represented by the squares, except for the lack of
a sample shutter to control the deposition rate during the
initial stages of growth, and more frequent interruptions
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of the deposition to prevent sample heating. Correlation
lengths and saturated rms widths are significantly lower
for the latter data set. We emphasize that details of the
deposition process can have a great impact on the extent
to which spatial correlations can develop, if not the mode
of film growth itself.

Let us now compare our experimental results with cur-
rent theories of nonequilibrium film growth. Such a com-
parison involves theories which treat homoepitaxial film

growth on an initially flat surface while our experiment
involved heteroexpitaxial growth. This issue has recently
been examined in great detail within the context of CuCl
growth on CaF2(111) [24], where it was concluded that ki-
netic growth theories could indeed be applied to heteroepi-
taxial growth conditions. In the following paragraph, we
examine the consistency of the experimental roughness
amplitudes with theory [25]. This is due to the fact that
experiments have been known to compare favorably with

theory in terms of the scaling exponents, yet exhibit rough-
ness amplitudes which were seemingly inconsistent with
theory [9,26].

The distance d that a particle travels before being incor-
porated into the surface can be very roughly estimated by
assuming that tr(d) =—0.5a and writing the spatial scaling
relation as o.(L) = A(L/d), with a = 0.23 nm being the
size of one atomic step. In combination with the experi-
mental observation that cr(L) = 0.06Lo s2, this assumption
yields d = 2 nm. The width expected to develop over a
2 nm by 2 nm area on account of fluctuations alone [27],
gh/a j(d/a), is observed to be larger than tr(d) —= 0.5a =
0.115 nm for all values of h which were studied, consistent
with the basic theoretical scenario whereby surface mor-

phology results from a competition between random fluc-
tuations in the incoming flux, rl (x, y, t) and surface smooth-
ing processes such as diffusion effects.

The exponents which we observe are relatively close
to predictions of the "pure diffusion" equation, Bh jar =
Rd + ri —ai(V h), where Rd is the deposition rate and
Iri is a smoothing prefactor: (a, P, z) = (1, 1/4, 4) [27],
but these exponents are only expected in the preasymp-
totic scaling regime. They are also relatively close to the
predictions of an equation presented recently by Siegert
and Plischke [28], where additional terms in V'h were
included to refine the description of the surface mor-
phology: (a, P, z) = (1, 4

—3, 3 —4), for systems with
positive Schwoebel barriers. Pyramidlike growth, which
would be expected for the "growth instabilities" associ-
ated with n = 1 is not, however, in evidence in the STM
images. The observed roughness exponents moreover are
not within experimental error of o. = 1, and the correla-
tion lengths are observed to be of the same order as the
crystalline grain sizes, which have been completely ne-
glected by theory. Although there is growing experimen-
tal consensus that a wide range of deposition conditions
can result in film growth characterized by P = 0.2—0.3;
a = 0.8—0.9, a gap remains between theory and experi-
ment.
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