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Instabilities of Short-Pulse Laser Propagation through Plasma Channels
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The stability of short laser pulses propagating through plasma channels is investigated theoretically.
Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts
the dielectric properties of the plasma channel. The channel perturbation then further distorts the
laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is
obtained analytically for the special case of a quadratic radial density variation. As an example,
the spatiotemporal growth of a pure dipole perturbation is evaluated in various parameter regimes.
Mechanisms for suppressing the instability are discussed.

PACS numbers: 52.40.Nk, 52.35.Mw, 52.75.Di

The stable propagation of intense laser pulses in under-
dense plasmas is critical to the realization of laser
wake-field accelerators. For the plasma oscillation to
successfully accelerate an electron bunch it must have a
high degree of coherence. Nonlinear coupling between
the laser and plasma is well known to produce instabilities

[1]. If the instabilities are not controlled, they may
destroy the desired coherence.

The laser pulses must be focused to a small spot size
in order to generate a large amplitude plasma wave, and,
thereby, a high accelerating gradient [2]. The laser will,
in free space, remain focused over a diffraction length
(Rayleigh range) Z„= cotr2/2c, where to is the laser
frequency, c the speed of light, and o. the laser spot size at
the focus. A homogeneous plasma, which has a dielectric
constant e = 1 —to„p/to2, where to„o = 4ne2no/m . is the
electron plasma frequency, —e the electron charge, I the
electron rest mass, and no the plasma density, will only
enhance the tendency of the light to diffract. To achieve
a net acceleration of, say, 10 GeV, will require, with

present terawatt lasers, propagation lengths of order 10—
20 Rayleigh ranges. For overall efficiency reasons, the

propagation lengths must be long enough for a substantial
fraction of the laser energy to be converted into plasma
oscillation. This will require propagation over many
diffraction lengths.

Several schemes have been proposed to overcome
diffraction. Relativistic guiding [3—6] relies on the en-

ergy dependence of the plasma frequency, to~o/y, where

y = $1 + p p/m2c~. The electron momentum ~p~ will

be largest where the laser pulse is most intense; there-
fore the plasma frequency will be lower there, and the
pulse will generate a nonlinear index of refraction which
is larger at the center of the pulse than at the pulse edges.
Analysis has shown [4] that, in steady state, relativistic
guiding can focus the pulse whenever the total power is
greater than P, = 16.2(to/to~0) GW.

For the short pulses (of order a plasma wavelength)
envisioned in many wake-field accelerators, however,
relativistic guiding is substantially reduced [7]. This
is due to the tendency of the ponderomotive force

from the front of the pulse to push plasma electrons
forward and generate a density increase which balances
the relativistic mass increase. The plasma frequency then
has no transverse variation and cannot optically guide
the laser pulse. Relativistically guided long laser pulses
suffer from Raman forward and sidescatter instabilities

[8,9]. The instability leads to the breakup of the pulse
into small pulselets of order 1 plasma wavelength. The
utility of using these pulselets themselves for acceleration
is at present unclear [10].

An alternative scheme which has been investigated [11]
envisions guiding the laser pulse with a plasma density
channel. The channel should have a higher density on the
outside than on the inside, giving it an index of refraction
which decreases from the channel axis. A fixed plasma
channel is analogous to an optical fiber, and its guiding
properties can be similarly analyzed. The plasma channel
can be used to guide short pulses and has been studied

using axisymmetric models for parabolic density variation

[11]and for hollow channels [12].
This Letter considers the dynamic stability of channel-

guided pulses in the presence of plasma wakes. A
perturbation to the guided equilibrium leads, through the
ponderomotive force, to a plasma density perturbation
which, in turn, couples back to the perturbed field. Thus,
the plasma couples different longitudinal slices of the
laser pulse.

For example, a transverse instability of channel-guided
pulses occurs when the laser pulse is initially not centered
on the channel axis. The underlying physics is straightfor-
ward: The off-centered laser produces a ponderomotive
force with a dipole component; this causes the surround-

ing plasma electrons to try to follow the laser pulse. Thos
the shape of the channel is distorted, and its guiding prop-
erties are perturbed. The result is that the perturbation has
exponential spatiotemporal growth. In general, there mill

be a coupling between higher-order multipoles, so that the
back of the laser pulse will widen.

Raman scattering of laser pulses in plasma has been
investigated by numerous authors. The stability of rela-
tivistically guided pulses was studied [8,9] using a mildly
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relativistic Quid model. A dispersion relation was found
assuming that the perpendicular wave number is large
compared to the inverse of the transverse spot size. In
this Letter the plasma channel externally guides the laser
pulse. Scattering, for the quadratic density channel, is re-
stricted to a discrete set of transverse modes. Our anal-
ysis explicitly includes the finite transverse size of the

pump, which leads to coupling between different modes
and is not restricted to perturbed wave numbers which are
large compared to the inverse of the equilibrium mode
size. Valeo investigated [13] the dynamic stability of an
equilibrium consisting of a long laser pulse guided by a
self-induced (by the pulse) channel. His analysis is to
the temporal single mode growth on a hydrodynamic time
scale and without relativistic effects. The analysis here is
of the short pulse (plasma oscillation time scale) dynam-
ics, including mildly relativistic electron motion. Other
papers [14,15] have examined the consequences of self-
induced channels and filamentation on Raman instabili-
ties. Their theoretical model is based on pressure balance
equilibrium and nonrelativistic election motion, and they
derive only purely temporal growth rates. A nonrelativis-
tic analysis of the temporal evolution of Raman scattering
in a sinusiodally modulated plasma density has been made
by Barr et al. [16]. These investigations do not yield re-
sults for the short time scales and cold plasmas appropri-
ate for high intensity laser accelerators.

With a quadratic density variation, the problem can
be solved exactly. The physical model consists of a
performed neutral plasma channel with an unperturbed
density given by

is nonzero. We also assume that, in the region where
the laser amplitude is non-negligible, cu

p
« lcd where

co~ = 4me n(xi, z, t). The plasma density n = np + Bn,
where np is given by Eq. (1) and Bn « np

We approximate the radiation field A = mc2a/e, as

a = za(x+, z, t)(e„+ ie~)exp(i(kpz tcppt)) + c c. (2)

The field equation is, in the weakly relativistic limit
(lal' & 1),

1 8 lal'&p2 a=o. (3)c2 gt2 2 )
Introducing the variables

~I, (xg, Z, t) (
c2

s =t Z/vsp, Z =Z, (4)

and using the eikonal approximation results in

2
CdMo 2 2 P~—k +V

c c
lal2&

l
+ 2ik a=—0,2) Bz

where vsp/c = kpc/top. The amplitude is expanded as a
sum of the unperturbed guided laser pulse and a pertur-
bation driven by the generation of plasma density modu-
lations: a(x~, s, z) = ap(x&, s) + a~(x~, s, z). Note that
the equilibrium is chosen to be independent of distance z,
so that it travels through the plasma undistorted with ve-
locity vsp. Retaining leading order terms in Eq. (5) and
using the dimensionless transverse coordinates x = x/w,
y = y/w, V& = wVi, results in

(—V~ + r )ap = w —
kp

—
2 ap. (6)

Since the primary concern in this paper is guiding by a
channel we neglected the nonlinear terms in Eq. (6). In
our notation, this is equivalent to requiring

lap'l/8IC = lap'lw'~„'/sc' «1.
In deriving Eq. (6) we have also neglected the wakes in
the unperturbed field ap, created by the nonadiabaticity in
the unperturbed ap(s) dependence. Wakes occur in the
perturbed field a~, of course.

The calculation proceeds by linearizing Eq. (5) and
expanding the perturbation a~ in a complete set of
transverse eigenfunctions which P„can be expressed, in
cylindrical coordinates (r, 8) as

P„(r,8) = exp( —r /2)r L„(r )exp(im8), (7)

where L„are the modified Laguerre polynomials.
The unperturbed equilibrium profile ao, consistent with

the assumption that the field is small enough so that self-
guiding is unimportant, can be taken as

ap(s, z, x~) = ap(s)exp( —r /2), (g)

which corresponds to the lowest (m = O, n = 0) eigen-
function. The corresponding dispersion relation is

c2 c2 ) w
(9)
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np(xg) = np(1 + r /W ), (1)
where r = x + y . Since the duration of the laser
pulse is assumed to be short compared to 2m. /co~;, where

cu„; = 4m. e~np/m;, the ions can be considered immobile.
Furthermore, the laser frequency is much larger than
the plasma frequency, so that the evolution of the laser
pulse, caused by the electron density wake, occurs on
a time scale much longer then the laser period. Thus,
we consider an averaged (over a laser period), slow time
scale, weakly relativistic equation of motion for plasma
electrons under the influence of the ponderomotive force
of the laser field.

A fiuid model, which is applicable in a cold plasma
before wave breaking [17] has occurred, is adequate to
describe the plasma evolution for the short pulse duration
of interest here. For the plasma to be considered cold
the thermal velocity of an electron must be less than the
oscillatory velocity imparted to it by the laser field.

The channel density is taken to vary over a dis-
tance much larger than collisionless plasma skin depth,
so that K = c/cu„W « 1, where tp„= 4ne2np/m is.
the plasma frequency at the channel center. Then, as
shown below, the unperturbed laser pulse has a spot size
w = Wc 6p « W, so that the density does not vary
appreciably in the region where the ponderornotive force
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Using Eqs. (5) and (9), with g = (Bn/no —aoa(/2—
aoa(/2) the equation for the perturbed field is

( 8', '(lan+ CO p(Bs' " ) n()

c2V2

2
(a,*a( + aoa)).

—2 2

2+ V~ —r + 2ikw —a] =
C2

We have neglected the relativistic guiding term, propor-
tional to (a)„/c~)w~ao, within the bracket on the left hand
side (LHS) of Eq. (10). This is consistent with our as-
sumption that the relativistic guiding corrections to the
unperturbed profile can be neglected.

The equation for the density modulation Bn is given
by [8]

Note that the terms on the right hand side (RHS)
of Eq. (10), while of the same order as the relativistic
guiding term, are the ponderomotive driving terms for
the density perturbation on the LHS of Eq. (11). Equa-
tion (11) for Bn/no can be broken into a longitudinal
piece and a transverse piece by the use of the quasistatic
approximation, r()'!! = (1/cz)B /Bs .

Changing Eq. (11) into an integral equation, integrating
twice by parts, and inserting the resulting expression for
(Bn/no) into Eq. (10), yields

S

12 + Vz —i + zikza —~a, (z, z) = azz dz'ziaatz(z —z')(Vz ——~[aa(z')al(z', z) + aa(z')a', (z', z)j .
Bz) 2 —DC

Here both ao and a& are implicitly assumed to depend on xi.
The fundamental has m = 0, so that perturbed modes with differing azimuthal numbers are decoupled. Thus, we

concentrate on the evolution of a particular azimuthal mode, a&, with an arbitrary radial profile:

a( (xi, z, s) = g a„(z,s)P„(F,8) .
n=p

It is convenient to introduce dimensionless time and space coordinates:

s = cu„s, z = z/kw

Inserting Eq. (13) into Eq. (12) and integrating over the transverse dimensions, gives

(n( + m)! a()(s) gA„, i a„s z ds'sin(s —s') ao(s')a„, (s', z) + a„„(s',z)ao(s') . (15)

after Fourier transform in s, we find

laol I+l2 b =, A b
8 2z 2m+2 &i ) —

2&i

where I = m + 2ni, and

(18)

and its complex conjugate. Here A„= 2 + 2m + 4n,
where m is the azimuthal number, n is the radial number,
and

N! &I N+1
n)! nz! 2 +' kK , )

with N = n( + nz + m. Equation (15) can be used to
find the evolution of the instability for a finite duration
pulse. If ao has an arbitrary longitudinal profile, these
questions need to be solved numerically.

Further analytical progress may be achieved by assum-
ing that either ao varies slowly on the time scales of in-
terest, so that we regard ao to be independent of s. Equa-
tion (15) can then be solved by Fourier transform in s.
With

~2m+ I

Am ~ Gm
ning (m + n )

n)nz' (19)

k = 1
—

(((,/(1 —co ), (20)

The dimensionless frequency co is the Fourier transform
variable.

Equation (18) constitutes one of the main results of this

paper. It describes the evolution of any initial perturba-
tion to a flattop laser pulse propagating in plasma channel.
As it is obvious from Eq. (18), all the radial modes are
coupled to each other. This is a consequence of both the
nonlinear nature of the laser-plasma interaction and the fi-

nite transverse size of the unperturbed equilibrium. This
formalism can describe various perturbations to a laser
pulse, such as hosing, breathing, and other modulational
instabilities, such as quadrupole distortion.

It is instructive to examine the evolution of a laser
pulse which is initially displaced from the center of the
channel as a "rigid body" [the (m, n) = (1,0) mode]. The
dispersion relation for this mode, obtained by keeping
only the diagonal element, is
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where p, = )aQ/8(1 + 1/K) = )aQ/8K. A more accu-
rate treatment would involve keeping a finite number of
modes and diagonalizing the dispersion matrix.

Asymptotic behavior of the solution for z ~ 1, s ~ 1

can be obtained by the steepest descent integration (see,
for example, Ref. [18]) in regimes that are delineated by
relations between the length of the pulse s, the interaction

length z, and the coupling parameter, p, « 1. With

z& = kpw and in dimensional variables, the asymptotic
amplitudes are:
(i) Long pulses &„s » I/p(z/ztt),

a~ —a~o exp v 3/4 )ao/8K( (z/zR) (tops) ~ (21)

The hollow plasma channel [12], which has superior
accelerating properties, can, for some parameters, support
only a single eigenmode. This may greatly reduce the

instability.
Future investigations need to examine in more detail

the inhuence of the nonlinearities in the unperturbed

equation, especially wakes generated by the equilibrium
mode, relativistic electron velocities, coupling between
modes, and different density profiles and pulse shapes.

This work was supported by the U.S. Department of
Energy, Division of High-Energy Physics.

(ii) Intermediate pulses IL(z/z„) « co„s « 1/p, (z/zg),

a~ —a~a exp (ao/8K( (z/ztt) (tops)'
'

. (22)

(iii) Short pulses to~ s && p, (z/zR),

a~ —a/Qexp 3v3/4 )ao/8K)' '(z/ztt)' '(tots)

(23)
Equation (20) for these parameters was inversely

Fourier-Laplace transformed and solved numerically
for 10@, radiation propagating through a plasma with

n p
= 4 & 10' cm, focused to a 0.1 mm spot, with

ao = 0.4. The perturbation, at a distance s = A„/2 be-
hind the onset of the instability (at s = 0), grows tenfold
after 20 Rayleigh ranges.

The perturbation exponentiates as (z/zR) t (sto),
where q + r = 1. This exponentiation is typical of
beam breakup instabilities [19] in conventional acceler-
ators where a charged particle bunch interacts with its
electromagnetic environment. Here the laser pulse is
somewhat analogous to the particle beam and the plasma
channel to the metallic structures through which the beam
propagates. %hile the analogy fails in detail, it is useful
in suggesting cures for the instability. In linear electron
accelerators, a technique known as BNS [20] damping
has been employed to mitigate the effect of beam breakup
instabilities. The BNS damping works by introducing a
head-to-tail variation in the transverse oscillation frequen-
cies of the accelerated particles. A similar technique may
be used here —head-to-tail variation of the diffraction
length (1/z, corresponds to the transverse oscillation
wave number for the guided laser pulse). This variation
can be imposed through a frequency chirp or may occur
naturally, for sufficiently intense pulses, from relativistic
guiding. Since the transverse modes in the system are
coupled and have different phase velocities, phase mixing
can occur as, say, a growing dipole mode generates
higher-order modes which then dephase. Plasma accel-
erators will require stringent control of the phase and
amplitude of the accelerating mode —the wake generated
in the plasma. The extent to which plasma instabilities
limit the performance of a plasma accelerator is under
investigation.
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