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Experimental and Numerical Evidence for Riddled Basins in Coupled Chaotic Systems
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We present direct experimental and numerical evidence for riddled basins of attraction for the
synchronous chaotic state in a system of coupled chaotic oscillator circuits. Both experiment and

computation show scaling typical of basin riddling.

PACS numbers: 05.45.+b, 84.30.Ng

Recent work by Alexander et al. [1] has shown that
theoretically there can exist chaotic dynamical systems
having chaotic attractors that have their basins of attrac-
tion literally riddled with points from another attractor's
basin. Basin riddling frequently occurs when the chaotic
attractor exists in an invariant subspace (e.g. , a symme-
try plane) and the second attractor is not contained within
this subspace. The riddling is extreme in that the points
of the other basin are dense in the chaotic attractor's
basin (existing arbitrarily close to the chaotic attractor)
and have a nonzero measure. These properties imply that

any initial condition in the neighborhood of a point go-
ing to the chaotic attractor has a nonzero probability of
going to the other attractor. Consequently, predictability
of the final state is much more difficult than in systems
with "ordinary" fractal basin boundaries. Several theo-
retical and numerical works have appeared that support
these findings [2—8]. Lai and Winslow [9,10] have also
found that some systems can exhibit riddling in parame-
ter space.

An important issue is whether these effects can be
seen in real physical systems. The purpose of this Letter
is to address this issue. Ott and Sommerer [4] have

conjectured that one place to look for riddled basins is in
reaction-diffusion systems of the type u = V2u + f(u) or
their discrete counterparts, diffusively coupled oscillator
systems. The latter systems can exhibit synchronous
chaotic behavior, and are the systems we consider here.

In the framework of diffusively coupled oscillator sys-
tems, the synchronization manifold [11],defined simply as
the space where all oscillators execute identical dynamics,
plays the role of the invariant subspace where the chaotic
attractor exists. Motion on it is governed by u = f(u)
(since V2u = 0 in the synchronous case). Stability of the
synchronous chaotic attractor is determined by the trans-
verse Lyapunov exponents [1—7,11]. When the largest of
these exponents approaches zero from below there will be
points in the synchronization manifold that are dense in
the attractor (but of measure zero) and that are repelling
from the attractor in directions transverse to the manifold.
If there is another (nonsynchronous) attractor in the sys-
tem, points in the neighborhood of the synchronization
manifold can be repelled onto the other attractor. Hence,
the second attractor has basin points arbitrarily close to the

chaotic attractor —the basin of the synchronous attractor
is then said to be riddled [12].

Basin riddling is of possible importance in systems
where synchronous chaotic behavior has been seen or
is expected. There are numerous examples, making a
complete list impossible. Representative works are syn-
chronous chaotic lasers [13,14], synchronized chaotic cir-
cuits or communications systems [15—17], synchronized,
but chaotic biological systems [18,19], and studies us-

ing standard chaotic systems coupled in some fashion
[20,21].

Recently, Ashwin et al. [7] have begun experiments
with two coupled chaotic circuits that have shown that
near the synchronization threshold there is a "bubbling"
behavior of the circuit's motion, suggesting repelling
points on the attractor in directions away from the syn-
chronous state. The authors make a case for basin rid-
dling in their system through empirically determined
normal Lyapunov exponents obtained from a map con-
structed from the experimental data. It appears, however,
that direct experimental observation of riddled basins and
the scaling behavior associated with them [3,5] has not
been carried out.

We report here on direct observations of riddled basins
in experiments and associated numerical work with a sys-
tem of synchronized chaotic circuits [22]. The structure
of the numerical riddling matches well with the experi-
mental basin picture. Furthermore, both the experimental
and numerical results display a scaling of the measure of
the basin riddling in accord with existing theory [3,5].

In previous work [11] we showed that diffusively
coupled systems with periodic boundary conditions are
members of a class of coupled systems with so-called shift
symmetry. For W oscillators this symmetry allows one to
decompose the behavior near the synchronous state into N
spatial Fourier modes from 0 to N/2 with 1 through N/2
1 being twice degenerate for N even. The 0th mode (the
average) is the motion on the synchronization manifold
with all other modes transverse to that manifold. Bee
synchronous state becomes unstable when modes other
than the 0th one do not damp out, as determined by the
transverse Lyapunov exponents.

Our particular circuit system is a set of four Rossler-like
circuits coupled diffusively through their x coordinates
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FIG. 1. Projection of three coexisting attractors in the x-y
plane for a numerical model of coupled Rossler-like system at
k = 0.935. The synchronous chaotic attractor is in solid, while
the two period-1 attractors are indicated as dashed and dotted
lines.

x; = f—y;
—z; —rx; + k(x;+1 + x; 1

—2x;),

y; =x;+ay;,
z; = —bz; + cg(x;),

where the ramp function g(x) = x —d if x ) d and
0 otherwise, and the indices denoting the particular
oscillator node are taken mod4. Typical parameters are
a = 0.13, b = 1.0, c = 15.0, d = 3.0, f = 0.5, and r =
0.05. The coupling k varies from 0.0 to 1.0 in our studies.

This system has stable, synchronous chaos for coupling
values 0.031 ( k ( 0.945 in the model and 0.08 & k (
0.82 in the circuit. There are four spatial modes for the
system: mode 0 (the synchronous state), two mode 1 states
("long wavelength" ), and one mode 2 state ("short wave-
length" ). At k = 0.82 in the circuit the synchronous state
loses stability with the shortest wavelength mode going
unstable first. The same behavior occurs at k = 0.945
in the model. We have reported this unusual instabil-

ity elsewhere [23]. Near the bifurcation threshold (just
above and below that value) there are two other attrac-
tors off the synchronization manifold which are periodic
(period 1) and which have mode 2 spatial components.
These nonsynchronous attractors exist in pairs because
the oscillators are identical; the attractors are related by
a simple shift of indices i i + 1mod4. This is just the
situation where we might find riddling and where we do
so in this experiment. Figure 1 shows the x-y projection
of the three coexisting attractors for the model system at
k = 0.935.

We can detect (experimentally and numerically) the
period-l, nonsynchronous attractors by a simple Fourier
analysis of one of the components of the four oscillators
[e.g., y; in Eq. (1)]. The presence of a nonzero mode 2
component allows us to recognize the period-1 attrac-
tor(s). A zero mode 2 component implies the system is
in the synchronous chaotic state.

We built circuits based on Eq. (1). The circuits are
explained in more detail elsewhere [11]. Each circuit was
built as an analog computer, and numerical simulations
of Eq. (1) confirm that the circuit was well described
by these equations. The circuits were coupled in a
diffusive fashion, as in the numerical model. The sum

x;+& + x; &

—2x; was performed by an analog adding
circuit. The sum was then fed into an analog multiplier

chip, where it was multiplied by a constant voltage
which had the same value as the coupling constant k.
The coupling constant was fixed just below the short
wavelength bifurcation point; in the experiment k was set
to 0.805, while in the model k was set to 0.935.

It is convenient in experimental and numerical
investigations of riddled basins to construct a two-
dimensional grid of initial conditions, with one coordinate
representing a direction along the invariant subspace
(synchronization manifold) and the other representing a
direction transverse to the invariant subspace. At the
suggestion of Ott [24], we constructed such a grid for
our coupled oscillator system as follows. First, a point
(xs, ys, zs) on the synchronous chaotic attractor was
selected. The in-sync direction was chosen to be the de-
viation Ax of the initial x value from xq for all oscillators.
The transverse direction was chosen to have a pure mode
2 Fourier component by setting y; = y, + (—1)'b,y, i =
0,1,2,3. The z coordinate of each oscillator was set to
zs initially. The deviations bx and by were then varied
systematically to make up the two-dimensional initial
condition grid.

The experiment was computer controlled and auto-
mated. Starting from each grid point the circuit was
allowed to evolve for 1 s (approximately 1000 times
around the attractor) to eliminate transient behavior, at
which point the mode 2 Fourier coefficient Sz = yo-
y& + y2

—
y3 was computed and averaged over the next

100 cycles. If the magnitude of ($2) fell below a certain
empirically determined threshold, the final attractor was
labeled as synchronous and a black dot was plotted at the
grid point (b,x, by). Otherwise, depending on the sign of
(S2), the attractor was labeled as one of the period-1 at-
tractors and no dot was plotted.

Figures 2(a) and 2(b) show regions of the experi-
mental basins at two magnifications. Figures 2(c) and

2(d) show corresponding basins determined from the
numerical model. Each plot shows a 200 x 200 grid of
initial conditions. Only the positive by portion is shown
in the plots, so that only one period-1 attractor comes into
play. The negative Ay portion has the same structure in
the numerical model, although because of unavoidable pa-
rameter variations in the circuits, the positive and nega-
tive portions in the experiment were not mirror images.
The basin of the synchronous chaotic attractor (black)
shows clear signs of riddling both experimentally and
numerically, as evidenced by the number of white dots
interspersed throughout the basin. Note that both the
experiment and the numerical work show similar struc-
tures in the riddling and in the "peaks" present in the
synchronous attractor's basin. There is an overall scale
difference between the experiment and the numerical
simulation in the transverse coordinate Ay. This is most
likely due to imprecise parameter matching between the
model and the circuit; we have observed the basin plots to
be especially sensitive to the tuning of the coupling con-
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FIG. 2. Basins of attraction for the coupled Rossler-like system in the Ax-Ay plane. Basin of the synchronous chaotic attractor
is in black, while basin of period-1 attractor is in white: (a) experimental results, (b) blowup of (a), (c) numerical results, and (d)
blowup of (c).

stant k near the bifurcation point. This scale difference is
inconsequential as far as the presence of riddling goes.

An important statistic in basin riddling is the measure
of the basin riddling as one moves away from the
invariant manifold. The measure is taken to be the
probability P of going to the period-1 attractor. This
probability is predicted to scale as a power law with
the transverse coordinate [3,5]; in our case we expect
P —b,y". Figure 3(a) shows a log-log plot of P versus

4y for the experimental system. For each line Ay =
const, the probability P was estimated to be the fraction
of points going to the period-1 attractor from a uniformly
spaced sample of 1000 points. Figure 3(a) is based on
the region shown in Fig. 2(a). Error bars represent 95%
confidence intervals in the probabilities P [25]. Also
shown in the plot is the best fit power law to the scaling
region of the data. Each point in the fit is weighted by
the inverse of its accompanying error bar. Figure 3(b)
shows a similar plot for the numerical model based on
the region shown in Fig. 2(c). Power law scaling with
a critical exponent near g = 2 is seen in the experiment
and the numerical model.

We consider Figs. 2 and 3 to provide compelling evi-
dence for the existence of basin riddling in this system.

These results appear not to be specific to our system, in
the sense that they require only a synchronous chaotic
state and attractors off the synchronization manifold near
the synchronization threshold. Many coupled, chaotic
systems should fulfill these requirements. This corrob-
orates the conjecture by Ott and Sommerer [4] that basin
riddling should be common in such systems.

Recent work [5] has shown that the effects of noise
can be incorporated within the basin riddling theory.
Although we have not investigated these effects, we
can conclude that a small amount of noise (invariably
present in any electronic circuit system) does not appear
to eliminate the basin riddling phenomenon. For small
transverse deviations noise effects do appear in the
experimental probability plot [Fig. 3(a)]. As hy 0
the probability of going to the nonsynchronous attractor
appears to level off instead of displaying power law

scaling behavior. This suggests that noise effects become
dominant near the synchronization manifold.

There are some suggestions that coupled systems op-
erating in a synchronous chaotic fashion might be of use
technologically. These uses include lasers [13,14] and cir-
cuits [26—29]. The significant effect of riddled basins in

coupled systems strongly suggests that such applications
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FIG. 3. Log-log plot of probability P of going to the period-
1 attractor as a function of the mode 2 Fourier amplitude hy'.

(a) experimental results; (b) numerical results. Power law fits
to the scaling regions in each plot are carried out by weighting
each point according to the inverse of its error bar.
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