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Electron-Molecule Scattering above the Ionization Threshold
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%e show how to extend close-coupling calculations into the intermediate energy region without
explicitly including a large number of inelastic channels. By discretizing the target continuum in a
suitably chosen set of complex functions, we can construct convergent representations of a Feshbach
optical potential that represents open inelastic channels including the ionization continuum. The
method can be implemented for electron scattering by atomic or molecular targets with minimal
modifications to existing electronic structure codes. The method is illustrated by applying it to e + Li&

elastic scattering.

PACS numbers: 34.80.Gs

The close-coupling formalism is the centerpiece of time-
independent scattering theory and has formed the basis
of most ab initio work on low-energy electron-atom and
electron-molecule scattering. The essence of the method
is an expansion of the total wave function, describing the
composite target + projectile system, in a complete set of
internal states of the target, including the continuum. Scat-
tering information is extracted from an examination of the
asymptotic behavior of the channel functions, which are
the coefficients of the target eigenstates in the total wave
function. Obviously, the complete set of target states must
be truncated to finite size in actual computations, and the
continuum states, if included, must be appropriately dis-
cretized. Some time ago [1] it was learned that, in the
low energy region below the ionization threshold, con-
vergence could be accelerated by including energy pseu-
dostates above that threshold in the expansion, typically
obtained by diagonalizing the target Hamiltonian in a ba-
sis of square-integrable (L2) functions.

The intermediate energy region, extending from the
ionization threshold to an energy of a few hundred eV
presents a formidable challenge for ab initio theory. The
infinity of open channels precludes us, even in prin-

ciple, from writing down a wave function that describes
all possible scattering events and is simply a reflection of
the fact that the ionization problem persists as one of the
fundamentally unsolved problems of atomic collision the-

ory. Close-coupling expansions that include pseudostates,
when extended to the intermediate energy region, typically
encounter unphysical resonances near pseudostate thresh-
olds [2], although their effect appears to diminish with

increasing number of states [3]. As computer power has
increased over the years, so has the number of target states
that could be included in close-coupling expansions, allow-

ing some exploration of their convergence properties.
Recently, Bray and Stelbovics [4] demonstrated, quite

convincingly, that the close-coupling method does in fact
converge at intermediate energies if enough states are in-

cluded in the expansion. By including up to thirty target
states in calculations on e + H scattering, they found that
the pseudoresonance behavior eventually disappears. The

intermediate energy R-matrix method [5] offers a simi-
lar approach to the problem but has not been able to
obtain convergence without the need for averaging over
dense pseudoresonance structure. Without detracting from
the importance of these demonstrations, it remains to be
seen whether such approaches will be applicable to elec-
tron scattering from complex atomic or molecular targets,
where the number of terms needed to achieve convergence
is likely to be far greater than what is currently feasible.

The Holy Grail of ab initio time-independent scattering
theory is a method which requires specification only of
the initial and final states of the target for calculating a
particular elastic or inelastic cross section and, thereby,
avoids the close-coupling expansion. Progress along
these lines has usually involved the use of analyticity.
Early efforts, dating back to the work of Schwartz and
Schlessinger [6], involved calculations of the T matrix
at negative or complex [7] energies, where asymptotic
boundary conditions need not be enforced, followed

by analytic continuation or extrapolation to physical
energies of interest. From these early methods a variety
of techniques later emerged [8,9], which attempt to
move the continuous spectrum of the Hamiltonian off
the real energy axis, thereby enabling the computation of
scattering quantities without specification of asymptotic
boundary conditions. While such techniques have been
refined into powerful tools for computing resonance states

[10], their application to nonresonant electron scattering
has been less successful. With applications in elec-
tron scattering largely confined to model potentials and

simple atomic problems and the failure of any widely
applicable, practical computational schemes to emerge,
these approaches have largely remained a formal, if
intriguing, curiosity.

The Feshbach optical potential formalism [11]provides
a framework for singling out one or more discrete
scattering channels and treating the remainder implicitly.

By partitioning the total space into P and Q-space parts, -

where P projects onto the asymptotic states of interest,
one can derive an effective Hamiltonian that determines
PW. The effective Hamiltonian is the sum of PHP and
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an optical potential V,„, which takes the form

1
V,z, = limPHQ . QHP.

e~o E — H +is
Feshbach partitioning can easily be used in conjunction
with a close-coupling expansion. If P space includes all

open channels, then the optical potential is real and can be
expanded in a straightforward way as

lifetimes of complex atoms. A method was needed for
applying complex rotation only to the coordinates of the
outer valence electrons, while leaving the inner orbitals
unchanged [13]. To accomplish that end, consider the
matrix element

(g;)H(re' ))e})—= r dr f dry, [r}H(re'")ee(r)
0

(4)

V, , = QPHic);) (4;iHP,
l

(2)
where g; is an L2 basis function. By distorting the
contour for the radial integration in Eq. (4) onto a
complex, rotated path, it can be shown that

where E; and 4; are the eigenvalues and eigenfunctions
of QHQ obtained in a basis of square-integrable terms.
However, the optical potential of Eq. (2) is not appropri-
ate for cases where Q contains open channels. In such
cases, the optical potential should be complex, reflecting
loss of flux to open channels included in Q. In contrast,
V,~, of Eq. (2) is real and has singularities at energies in
the discretized continuous spectrum of QHQ. This gives
rise to the pseudoresonance behavior discussed above.

The idea of using complex coordinates to obtain a
convergent representation of Eq. (2) was recently applied
to a model problem (the radial limit of elastic e + H
scattering) by Bhatia, Schneider, and Teinkin [12], who
computed converged elastic cross sections above the ion-
ization threshold. However, the complex rotation method
they used must be modified to be practical for many-
electron targets. That modification is outlined in this Let-
ter, where we propose a simple scheme for implementing
a complex basis function method to represent the optical
potential in a form akin to that of Eq. (2), but which is
valid at any real value of E.

The complex basis function technique [9] is a gener-
alization of the coordinate rotation method [8). The lat-
ter, for a many-body Coulomb system, simply corresponds
to a scaling of all interparticle coordinates according to
the prescription r;, ~ r;, e'~, 8 ) 0. This transformation
has the formal property of leaving the discrete spectrum
of the Hamiltonian unchanged, while rotating the continu-
ous spectra of the system into the complex energy plane.
In order to appreciate the problems that arise when coordi-
nate rotation is applied to many-electron systems in general
[13]and to molecular targets in particular [14],consider a
case where the target wave function is well described by a
determinantal function of the form

rg;IH(re' )Ige) =e ' r dr f dry,
0

X (re' )H(r)g, (re ' ),
that is, coordinate rotation is equivalent to using a real
Hamiltonian and basis functions whose coordinates are
scaled by e '~. Note that the usual definition of the
scalar product must be modified so that there is no
complex conjugation of the factor e '~ associated with the
transformation. Generalizing to a many-electron problem,
we can speed convergence by using real basis functions
to expand the core orbitals and by employing complex
basis functions only to describe valence electrons. This
generalization of the method no longer corresponds to any
simple scaling of the variables in the Hamiltonian.

For molecules, we must go farther. If we use the
Born-Oppenheimer approximation, then the nuclear
coordinates are treated as fixed parameters in the
electronic Hamiltonian, not dynamical variables. How-
ever, if the nuclear coordinates are left real and the
electronic coordinates scaled r ~ re'~, then the electron-
nuclear attraction terms in the Born-Oppenheimer
Hamiltonian,

render it a nonanalytic operator. The solution again is
to use complex basis functions, but to associate a scale
factor e 'e with the orbital exponents and not the electronic
coordinates [14]. For example, if one is using nuclear-
centered Cartesian Gaussian functions, then one would
simply choose functions of the form

gi „(r,ne ', A) = (x —A„) (y —
AY) (z —A, )"

X exp[ —ae '~(r —A) ] (6)
Pp A(fi(ri) P)}er(r)v)) (3)

After coordinate rotation, the function that gives the same
value for the target energy is simply that given in Eq. (3)
but with all coordinates replaced by r;e'~. The generic
problem is that the core orbitals oscillate rapidly under this
transformation and are difficult to represent by standard
basis sets. In a molecular case, nonanalyticities appear
at the nuclei, vide infra, and the difficulties are worse
still. The basic difficulty was discovered some time ago in
attempts to use the method to find resonance positions and

to expand the valence orbitals, again defining the scalar
product without complex conjugation. This prescription
corresponds to an asymptotic scaling of the electronic
coordinates which rotates the continuous spectrum of the
Born-Oppenheimer Hamiltonian off the real axis.

In this Letter, we apply the complex basis function
method only to the Q-space part of the partitioned wave
function, to obtain a discrete, complex representation of
the operator (E QHQ), which can -be inverted to give
an approximation to the optical potential that is valid at
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any real energy E. One could use this complex optical
potential in any conventional variational method. We use
the complex Kohn method as previously developed [15],
with a trial function that includes continuum functions
only for those channels delineated in P space. This
contrasts with previous attempts to use complex basis
functions to solve the entire scattering problem without
enforcing asymptotic boundary conditions [16]. The
present approach is far less demanding of the complex
variational basis, since the channels of interest are treated

by a conventional formalism, and the complex basis
expansion is only used to construct that part of the
interaction potential that represents the effect of other
channels on those between which we are computing the
scattering amplitudes.

While there is no formal difficulty with forming a ma-
trix representation of QHQ in a complex basis, practical
considerations led us to a simplification which avoids the
need to compute the Hamiltonian matrix elements involv-

ing complex functions directly. Without loss of general-

ity, we can represent the complex matrix elements in the
denominator of Eq. (1) by using a complete real basis to
expand any complex orbitals that appear in the represen-
tation of QHQ. The denominator matrix takes the form

N N

(E —QHQ)- -I = EB I
—g- g-

n n'

X (mJn) (nlQHQ In') (n')m'), (7)

where [m) and ~m') denote configurations containing
complex orbitals. The sums over the real basis must be
larger than the order of the denominator matrix. This is
in fact a general procedure which can be applied to the
calculation of resolvent matrix elements.

For an initial demonstration, we look at elastic e +
Li2 scattering in overall X„+ symmetry. The Li2 dimer

has very low-lying excited states and an ionization poten-
tial of only 5 eV [17]. Moreover, from our previous study

[18), we know that the~X+ partial cross section has a
pronounced minimum near O. l eV which is sensitive to
polarization effects and that the static-exchange approxi-
mation grossly overestimates the cross section in the en-

ergy range below 1 eV. In the present calculation, we

describe the Li2 molecule in its ground state by a self-
consistent field (SCF) wave function, which has the con-
figuration 4p = lo. lo.„2o.2, 2X+, in a 4s4p ld contracted
basis of Gaussian functions. The P-space function then
has the form

P%'=4pf „. (8)
The variational basis used to expand f consisted of the
unoccupied ~„orbitals obtained from the SCF calculation,
an additional four s- and five p-type Gaussians on each
atom, and continuum functions up to l = 5.

To construct the Q-space part of W, we form (N + 1)-
electron configuration state functions (CSF) as the direct
product of a configuration obtained by promoting a 2o.

g

valence electron into a complex orbital and an additional
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complex orbital to describe the scattered electron, i.e.,
we use terms of the form 10.210.22o.gngmy, where
the orbitals y are formed from complex basis functions
of the type defined in Eq. (6), orthogonalized to the
occupied orbitals, and orthonormalized with respect to
a scalar product defined without complex conjugation.
It is important to note that each CSF contains two
complex orbitals: we wish to rotate not only the continua
associated with each excited state, but also the ionization
continuum which is being represented by the discretized
pseudostates.

In order to avoid the substantial recoding effort that
would be required to calculate, transform, and process
complex one- and two-electron integrals in an electronic
structure code, we implemented Eq. (7) by expanding the
complex orbitals in the basis of real virtual orbitals, i.e.,
we use the approximation

yi „(r,u e ",A) = g cp g, „(r,b, A), (9)
P

where the coefficients c$ are simply the overlaps between
the complex and real functions. To insure that no result-

ing error is introduced, we must be certain that the real
basis is large enough to represent the complex orbitals.
In these calculations, we picked approximately half of
the original real basis functions to make complex via the
transformation u ne '~, while using the entire basis of
real orbitals to carry out the expansion in Eq. (9). This
approximation allows us to form QHQ in a real basis of
CSF's without modifying any structure codes and subse-

quently transform to the complex basis representation us-

ing only the complex overlap matrix elements. We can
represent the transformation symbolically as

( PIQHQI&~)..., ., = g „".P

KAp. p

x (~AiQHQip, v)„,ic~c„,

which not coincidentally has the form of a two-electron
integral transformation. We carry out an analogous
transformation to obtain the complex matrix elements of
PHQ and then construct the optical potential by simply
inverting the complex matrix (E-QHQ).

Figure 1 shows the 2X+ elastic cross section from
0.02 to 10 eV. In the frozen core approximation we
are using, the first excited state of Li2 lies at 0.7 eV,
and the ionization energy is 4.9 eV. Three results are
plotted. The static-exchange result, which is obtained

by dropping the optical potential, grossly overestimates
the cross section in the low-energy region below the first

excited state. The static-exchange interaction is incapable
of binding an electron in 2X„+ symmetry (Liq is bound

in this symmetry), but produces instead a spurious low-

energy shape resonance. Two curves from calcu1ations

employing an optical potential are plotted, one obtained
solely with real functions and the other corresponding
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to a rotation angle 8 = 20'. It is gratifying to see
that the two curves are virtually identical in the region
below the first excitation threshold, as of course they
should be, while the complex basis set results remain
smooth as the energy increases up to and above the
ionization threshold. In contrast, the optical potential
results obtained with real functions display characteristic
pseudoresonance behavior in this region. We have varied
the rotation angle and verified that the results are indeed
stable. Figure 2 shows the complex eigenvalue spectrum
of QHQ corresponding to the results plotted in Fig. l.
There is evidently no tendency for eigenvalues to bunch
near pseudostate thresholds in the ionization continuum
and the eigenvalues that represent the ionization cut move
well into the complex plane.

In conclusion, the complex optical potential method we
have outlined is clearly capable of extracting useful cross
section information from finite pseudostate close-coupling
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FIG. 2. Complex eigenvalue spectrum of QHQ obtained with
a rotation angle of 20 .
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FIG. 1. Elastic cross sections for e + Li2 scattering in
'X„+symmetry. Solid curve: complex optical potential result;
dotted curve with data points: optical potential results using
real basis function; dashed curve: static-exchange result. Inset:
cross sections in the low energy region below 1 eV.

calculations at energies where traditional methods can be
plagued by spurious pseudoresonances. By relying on a
complex basis function formalism, rather than coordinate
rotation, we have demonstrated a method that is prac-
tical and readily applicable to many-electron atomic or
molecular targets. And fina11y, we have shown that, by
reexpanding the complex basis functions in a set of real
functions with complex overlap coefficients, we can con-
struct the quantities of interest without extensively modi-

fying or rewriting standard electronic structure codes.
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