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Brownian One-Body Dynamics in Nuclei
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A novel method is presented for introducing fluctuations in one-body dynamics. It consists of
employing a Brownian force in the kinetic equations. For nuclear matter within the spinodal zone, the
magnitude of the Brownian force can be determined by demanding correspondence with the growth of
the most unstable mode, as given by Boltzmann-Langevin simulations. The method is illustrated and
tested for idealized two-dimensional matter and promises to provide a practical means for addressing
catastrophic nuclear processes.
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Transport phenomena occur in many physical systems.
The approach pioneered by Boltzmann has proven par-
ticularly useful and has provided a good understanding of
gas kinetics in various fields. For interacting gases, for
example, of van der Waals type, the interparticle forces
can be taken into account by a mean field. In particu-
lar, the nuclear Boltzmann equation [Boltzmann-Uehling-
Uhlenbeck (BUU)] forms a very successful framework for
understanding a variety of features associated with nu-

clear collisions at intermediate energies, including collec-
tive flow and particle production [1,2].

In the standard Boltzmann treatment, only the average
effect of the collisions between the particles of the con-
sidered system is included. This leads to a deterministic
description and single dynamical trajectory results. While
this simplification may be well suited in many physical
situations in which the dynamics appears to be rather
stable, it cannot provide a description of processes in-
volving instabilities, bifurcations, or chaos. For example,
in nuclear physics the BUU approximation is appropriate
during the early stages of a nuclear collision, when the
system is hot and compressed, but it becomes inadequate
if instabilities occur, such as when expansion and cool-
ing has brought the bulk of the system within the spinodal
zone of the phase diagram. In such scenarios, it is essen-
tial to include the fluctuations as well.

In many branches of physics such diffusive behavior
is described by transport theories originally developed for
Brownian motion. These approaches simulate the effects
of the unretained degrees of freedom by a random term
in the dynamics of the retained variables. This idea has
inspired an extension of the Boltzmann approach which
considers the collisions as random processes so that the
fluctuating collision term acts as a Langevin stochastic
term on the one-body density [3]. Accordingly, this
approach has been denoted the Boltzmann-Langevin (BL)
model.

A numerical simulation method was subsequently de-
veloped on a phase-space lattice [4,5]. This method has
been shown to exhibit the correct relaxation properties

[S—7] and also to describe the spontaneous agitation and
propagation of collective modes in unstable nuclear mat-
ter [8,9]. Thus, the lattice simulation method provides a
well-founded means for solving the BL equation in a nu-

merically reliable manner.
However, the application of this method to realistic sce-

narios is a formidable task, due to the effort associated
with the detailed simulation of all the possible elementary
two-body scattering processes on the lattice. A significant
advance was made recently by the derivation of simple ap-
proximate expressions for the BL transport coefficients at
equilibrium, reducing the required numerical effort by sev-
eral orders of magnitude [10]. Even so, the lattice simu-
lation of the BL transport problem is still too tedious to
provide a very useful practical tool for the understanding of
physical processes. Therefore, it is worthwhile exploring
ways of further simplifying the treatment so that realistic
calculations can be made with relative ease, thereby facili-
tating the confrontation between theory and experiment.

In this Letter, we present a novel method that appears
to bring this goal within reach. It consists of replacing
the actual complicated (hence computer demanding) fluc-
tuating part of the collision term BI by the effect of an

externally imposed Brownian force bF that is suitably
tuned so that the dynamics of certain important collec-
tive modes is in good accordance with the results of the
complete BL model. Specifically, since we are particu-
larly interested in how the spinodal decomposition of an

expanded system may lead to its multifragmentation, we
demand that the most rapidly growing unstable modes be
well reproduced, for each density and temperature within
the spinodal zone where exponential amplification of fluc-
tuations occurs.

This approach is akin to the simplest description of
the Brownian motion in which the dynamics of pollen
particles immersed in a molecular heat bath is described
by a simple random force, whereas the BL approach
would correspond to actually simulating the individual
co11isions with the gas. The method has the distinct
advantage that it can be readily implemented into existing
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Here the Fourier component BUk/Bp is simply related
to the corresponding Landau parameter Fp(&) [9,13,14].
The characteristic time tk is determined by the associated
dispersion relation, h D Idp fi", (p) = 1.

The analysis can be further simplified by the introduc-
tion of the associated dual basis functions [15],

fk(s» = k. p+
which have the convenient property h f dp fk(p)* &&

The source terms 23k"" governing the agitation rates
of the unstable modes can then be obtained by a simple
projection of the BL diffusion coefficient [15],

Zk I g p fk (pl )"D(p), p2)fi,
"

(pz) . (12)

This expression can be directly estimated numerically

[9,14] or analytically [13,16], taking advantage of the dis-

persion relation and of the low-temperature approximation
for the diffusion coefficient [10].

Turning now to the Brownian one-body dynamics, we
can obtain the corresponding collective source terms by
replacing D by D in Eq (12).. Exploiting the dispersion
relation, we then find

%e now demand that the BL results for the fastest
growing mode, for any given density and temperature, be
well reproduced by the Brownian one-body dynamics, i.e.,
we impose the matching condition 17k++ = Dz++(p, T),
where k is the wave number associated with the shortest
growth time tk in nuclear matter having been prepared with

density and temperature characteristic of the conditions
prevailing in the neighborhood of the specified position
r The de. termination of the local density p(r) is relatively
straightforward in the test-particle method, whereas the lo-

cal equivalent temperature is somewhat more problematic.
We prefer to determine T(r) by exploiting the simple re-

lationship between the temperature and the collision rate
which is automatically available in the BUU treatment; this

method does not require the momentum distribution to be
thermalized. It should be noted that the Brownian force
is only employed when the local conditions are inside the

spinodal region of the phase diagram.
In this manner the strength can be determined at each

point in space Do(r) in the course of the dynamical
evolution. In practice, once the local strength Do(r) has
been calculated, the test particles in the neighborhood will

feel the mean-field force augmented by a small amount

BF„picked from a normal distribution with a variance in
each direction given by o.F = 2Do/b, tb V, where b t and

AV are the time and the volume over which the same
force is applied. The small diffusive violation of energy
and momentum conservation can easily be eliminated by
a suitable correction of the effect on 6'F„on the individual

test particles [16].

In order to illustrate the proposed method, we consider
idealized unstable matter in two spatial dimensions, using
the simple Skyrme model employed earlier [8,17]. We
prepare the system at half its saturation density and with
a temperature of T = 3 MeV, which is in the region of
largest instability. The fastest mode has the wave number
k = 0.6 fm ' and the points in Fig. l show the evolu-
tion of the associated variance or~, based on a sample of
25 individual dynamical simulations, each one employing
3Y = 1500 test particles per nucleon. The strength of the
random force is Do = 144 MeV2 fm/c, the value obtained

by the procedure described above. The expected BL evo-
lution (solid curve), as obtained by the analytical linear-
response result taking into account the actual growth time
tk obtained in the test-particle simulation, is shown for
reference. We note that the Brownian one-body evolution
converges well towards the BL curve. To be more quan-
titative, we have also compared the numerical results with
the linear-response prediction for the Brownian one-body
dynamics, using the same actual growth time tk [16]. It
is clear that this analytical prediction describes the results
from the numerical simulation. Moreover, the evolutions
of neighboring modes are also rather similar [16], and so
the proposed method does indeed imitate the correspond-
ing BL dynamics fairly well.

We have presented a novel simulation model for nuclear
dynamics in the intermediate-energy regime where the
semiclassical one-body description is expected to be ap-
plicable. The method consists of augmenting the standard
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FIG. 1. Test of the method. The proposed simulation method
is tested by considering the evolution of the variance o.

& of
the most unstable mode in two-dimensional nuclear matter,
prepared at half the saturation density and with T = 3 MeV.
Solid curve: the expected BL result taking into account the
actual growth time obtained in test-particle propagation. Points:
the actual result of the Brownian one-body dynamics, with the
bars representing the statistical error arising from the finite
number of events. The contribution coming from the remaining
small noise due to the finite number of test particle (about
5%) has been subtracted using an ensemble of events with no
Brownian force. Dashed curve: the result of the corresponding
linearized Brownian one-body dynamics.
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BUU equation by a stochastic addition to the one-body po-
tential BU(r, t). In the present first development along this

line, the associated Brownian force BF(r, t) = BU/Br acts
only whenever the local density and excitation corresponds
to a phase point inside the region of spinodal instability,
and it is then tuned so as to imitate the spontaneous agita-
tion of the corresponding most unstable collective mode,
as given by the Boltzmann-Langevin theory. This local
tuning can be easily accomplished by means of simple an-

alytical expressions for the strength parameter Dp. The
method can thus be implemented relatively easily into ex-
isting transport codes, especially those employing the test-
particle method, and the additional computational effort is
relatively modest. The resulting dynamics thus extends
the standard BUU description by allowing the system to
undergo bifurcations whenever the local conditions are un-

stable, so catastrophic processes can be addressed.
We also note that the presented method is much prefer-

able to a recently suggested method in which the number
of test particles 2V is adjusted so that a good reproduc-
tion is obtained for the expected most dominant instability
[17]. Although that method can yield useful insight under
idealized circumstances, its practical applicability suffers
from two major drawbacks: the need to carefully explore
the nature of the instabilities encountered ahead of time
and the fact that only a single quantity can be adjusted,
namely 3V, so at most one single point of the phase-space
diagram could be well reproduced. Both of these draw-
backs are eliminated in the present method.

In developing this method we have been motivated by
the urgent need for dynamical calculations of reactions
under current investigation with advanced detector arrays
around the world. While the BL model is probably
the presently best-founded model for this task, it is
rather computer demanding in realistic scenarios. The
present method offers a relatively easy tool for obtaining
approximate results while more elaborate implementations
are in progress and applications are presently in progress
for three-dimensional multifragmentation processes [16].

We finally wish to point out that the presented approach
provides a general framework for studying the kinetics of
gases subject to Brownian motion and may therefore be
of wider interest.
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