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Microscopic T-Violating Optical Potential: Implications for Neutron-Transmission Experiments
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%e derive a T-violating P-conserving optical potential for neutron-nucleus scattering, starting from a
uniquely determined two-body p-exchange interaction with the same symmetry. %e then obtain limits
on the T-violating p-nucleon coupling g from neutron-transmission experiments in ' 'Ho. The limits
may soon compete with those from measurements of atomic electric-dipole moments.
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Several experimental groups have recently scattered po-
larized neutrons with low energies from heavy nuclei in
search of parity or time-reversal violation [1]. The time-
reversal experiments, requiring oriented targets, are the
more difficult to perform. So far the only published mea-
surements of this kind [2] have used neutron beams of
several MeV and aligned ' Ho targets to search for a de-
pendence of the forward elastic-scattering amplitude on
the "fivefold" T-violating P-conserving (TVPC) correla-
tion term (s I X p)(I . p). Here, I and s are unit vec-
tors along the axes of the target alignment and neutron
polarization, and p is the direction of the incident neutron
beam. The correlation in the forward amplitude shows

up as a change in the total cross section —related to the
amplitude through the optical theorem —when the polar-
ization of the incident neutron spin is reversed.

Until now there has been no credible way to connect
these experiments to fundamental sources of T violation.
Within the standard model TVPC effects must be tiny, but
in extended models this may not be the case. Here we
take an important first step in using neutron-transmission
experiments to test any such models: Through the con-
struction of a microscopic T-violating optical potential,
we show how to relate the TVPC observable A5 [3] (con-
nected to the difference between total cross sections for
spin-up and spin-down neutrons on an aligned target) to
TVPC meson-nucleon coupling constants. The problem
of constraining fundamental models of T violation then
reduces to physics at the meson or nucleon scale —namely
a description of the effective TVPC vertex in terms of
quarks and gluons.

In the case of parity violation, a number of mesons (m. , p,
to, etc.) contribute to the force between nucleons, which in
turn determines the optical potential. Fortunately for us,
the TVPC interaction is severely constrained. Simonius
showed some time ago [4] that only the p and At (or-
heavier) mesons can contribute at tree level; one-pion
exchange, for example, is not allowed. Moreover, the form
of the p-exchange potential is unique. The A&-exchange
force is less constrained, but A l is significantly heavier than
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where r&z ——ri —rz, 1 = r&z X z(p~ —pz), p,„=
3.70p, & (p is the nuclear magneton) is the isovector
nucleon magnetic moment, M is the nucleon mass, g~ =
2.79 is the normal strong pe% coupling, and g is a
dimensionless ratio of the TVPC coupling to g~. This
notation is taken from Ref. [5], where limits on g were
deduced from limits on the electric dipole moments of the
neutron and '~ Hg.

The potential in Eq. (1) has a number of peculiarities.
The isospin piece [r~ x rz]3 = 2i(r~+rz —rl rz+), which
is solely responsible for the T violation through the
factor i, implies that neutrons interact only with protons
and that the direct part of any two-nucleon matrix
element vanishes. In addition, the space-spin part of
the interaction, while Hermitian, is antisymmetric in the
nucleon coordinates. Combined with the spin dependence
of the force, these features have important consequences
for the strength of the neutron-nucleus TVPC optical
potential U(r), which we now proceed to evaluate.

We begin by considering a closely related quantity
M(r), the ground-state expectation value of the interaction

P
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where the index 1 refers to the incident neutron, [f,)
and iPb) are arbitrary neutrons states, the index p =
2, 3, . . . , Z + 1 labels protons in the nucleus, [4) is the
nuclear ground state, and the subscript A means that
the matrix element is completely antisymmetrized. The

p, and so its effects are damped by short-range nucleon-
nucleon repulsion. We therefore restrict our attention to

p exchange; the techniques we use can just as easily be
applied to A~.

The unique TVPC p-exchange interaction is [4,5]
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optical potential itself, U(r) —in the so-called "adiabatic
approximation" [6]—is a function of the nuclear-spin

I
operator I, the neutron-spin operator s = 2', and the
neutron position r, defined so that the ground-state nuclear
matrix element of U is M. This definition, which amounts
to treating the nucleus as an elementary particle with

spin I, is necessary for making contact with the usual

phenomenology, where terms that depend on the nuclear
spin (e.g., o I) appear in the optical potential.

A number of authors have derived similar one-body
potentials —usually felt by bound nucleons [7]—in the
approximation just described. Unfortunately, the unusual

features of Vp make the same kind of calculations
more complicated here. If the nuclear wave function is
approximated as usual by a Slater determinant, then

&rilMlr2& = 2i g(r~l(IIt( IV;,14(,)lr2&, (3)
p

where the JP„&are occupied proton orbits. Equation (3)
sums only exchange matrix elements in coordinate and

spin space; the optical potential is therefore entirely non-

local. Clearly, the "folding" of potential and nuclear
density that is often used to construct ordinary optical po-
tentials is not feasible. Furthermore, the various methods

[8] for constructing equivalent local potentials all make

simplifying assumptions that do not apply here. Luck-
ily, the (p} is heavy enough that a zero-range approxi-
mation will be accurate provided strong NN repulsion is
temporarily ignored. We therefore rewrite V~ as
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where V(2 = z(V( —V2), and p(2 = iV—(2 W. e then

take the limit mp ~, which amounts to replacing the
quantity in parentheses by a delta function of r(2. The
sum in Eq. (3) will now result in a local potential.
To obtain it, we first evaluate (Q, ~M~1l(b& in the delta-
function limit by going to relative and c.m. coordinates
and integrating by parts, yielding

2—
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where the derivatives act only on the functions immedi-

ately next to them, and the square brackets indicate com-
mutators, combined in the first term with a dot product.
M(r) is now just the operator in parentheses above. Not-

ing that the P„(r)are two-component spinors (PP t is an
outer product), we use trace identities to obtain

22
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where k labels Cartesian components. We have dropped
two other terms, coming from the second term in Eq. (5),
which change sign when the nuclear spin is reversed.
Since the fivefold correlation itself is invariant under
reversal of the nuclear spin direction, the neglected
terms can contribute only in conjunction with a po-
tential like cr . I, which rectifies their spin-reversal
behavior. Such terms do exist in the normal optical
potential [9], but are substantially weaker than the central
potential. If we imagine treating them together with
our TVPC potential as perturbative corrections in the
distorted-wave Born approximation, it is clear that
the term we have kept in Eq. (6), which already has

the right symmetry, will dominate those we have
omitted.

Some of the potential's unusual properties follow
directly from Eq. (6). If, for example, the P~(r) come
from a spherical potential, then M and U vanish in a
spin-saturated or closed-j-shell nucleus. Thus, only a few
valence protons in the last orbital contribute to U. A
spherical mean-field treatment, in fact, makes sense only
in closed-shell or closed-shell-plus-one nuclei, so that in

this simple picture at most one nucleon, characterized,
e.g. , by a valence orbital with quantum numbers n, l, j,
is relevant. Using standard angular-momentum algebra,
properties of spherical harmonics, etc., one can write
down an explicit expression for the M generated by the
valence orbital and then for the corresponding optical
potential U. For j = l + 1/2 we have

'~30'(-I)' '"g'g j
Qj (j + 1)(2j —1)(2j + 3)m M

(7)

where a = /2a + 1 and Z„(,„(,(r) is the diagonal compo-
nent of a matrix we will use again below (j' = l' ~ 1/2):
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The R„&jare related to the radial wave functions R„Ijby
t' 8 I + 1/2 ~ 1/2l

R„=,(r) —=
~

—~
I ~.Ij(r) . (9)(ar r )

The factor T5 in Eq. (7) is the fivefold operator

T5= 2r [s (I Xr)(I. r)+(I. r)(I &&r). s)
= —i~i. [[I X I]' X [I'2(r") X ~]']', (10)

where the square brackets now mean that the angular mo-
menta are coupled. [We have omitted from Eq. (7) other
terms that have no effect when the target is only rank-2
aligned. ] The presence of Ts in Eq. (7) is interesting; it
was proposed without microscopic justification in Ref. [3]
solely because of its TVPC tensorial structure. The ra
dial form of Eq. (7), however, is quite different from the

Woods-Saxon form used in Ref. [3], a point to which we
will return shortly.

First, however, having calculated U for spherical
single-particle states, we address '65Ho, the only nucleus
in which the fivefold correlation has actually been mea-
sured. To incorporate nuclear deformation, we use the
Nilsson model with e = 0.3. We repeat the evaluation
of the mean-field potential in Eq. (6)—this time in the
intrinsic frame —ignoring the weak dependence of the
TVPC Hamiltonian on the Euler angles. Next we expand
the intrinsic state in terms of spherical states (neglecting
admixtures with AN = 2) and integrate over Euler angles
in the usual way [10]. With some rearrangement of
terms, we arrive at the expression
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where I = 7/2 is the nuclear spin, K = 7/2 is the g

projection in the intrinsic frame, and the a s are spherical
expansion coefficients for the deformed single-particle
orbital labeled by Q. Even though all such orbits in the
valence shell now contribute to U, in the end the strength
of the potential is still comparable to that arising from a
single spherical orbital. Figure 1 shows the potential's
radial shape. The curve looks very different from a
typical volume or surface optical potential, refiecting the

nonlocality discussed above. It is small at both the origin
and the surface, peaking somewhere in between.

Including the TVPC potential alongside the strong
optical potential U [3] in, e.g. , the coupled-channels
code CHUCK [11], we can calculate the spin-correlation
coefficient As for any value of g, or vice versa. Figure 2

!
shows A5 as a function of neutron energy for g = 1.
The published measurement of A5 at 2 MeV [2] results
in an upper limit on g of about 0.5, a value that must
be increased by a factor of about 3 to account for short-

range repulsion [5], which we have so far neglected.
The additional analysis in Ref. [5] then implies a limit
on uT, the ratio of typical T violating to strong two-

body matrix elements, of about 1.5 X 10 2. A recently
completed experiment has improved the bound on A5

by a factor of about 15, however [12], and a further
order of magnitude is anticipated, potentially resulting in

bounds on o.T of order 10 4; this would make neutron-
transmission experiments competitive with measurements
of atomic dipole moments. Reference [5] also derives
another limit, roughly an order of magnitude smaller still,
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FIG. 1. The radial part of the TVPC optical potential U (with

g = I) multiplying T, in Eq. (11).
FIG. 2. The spin-correlation coefficient A, [3] as a function
of neutron energy for g = 1.
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from measurements of the neutron dipole moment, but
that value depends on the parity-violating pion-nucleon
coupling, the size of which has been estimated [13]but is
not known reliably.

In Ref. [3], a Woods-Saxon shape was used for the
radial potential multiplying T5 under the assumption that
the potential is proportional to the nuclear density. A
limit was then obtained on nT by dividing the strength
of the phenomenological TVPC potential (determined

by calculating As in the same way as is done here) by
that of the central optical potential. Our results show
that this procedure yields too small a limit by about 2
orders of magnitude. Our TVPC potential is generated
in lowest order by at most a few nucleons in the valence
shell —hence the different shape and considerably larger
upper limit on aT. A more appropriate way to extract
a rough limit from a phenomenological potential would
be to divide its strength not by that of the central
potential, but instead by the strength of a symmetry-
conserving spin-spin term such as [[I X I]z X [1 X
o]z]u, which resembles our TVPC interaction. In gen-
eral, spin-spin interactions are =100 times weaker than
central interactions because they too are generated only
by valence nucleons.

How reliable are the present results? The adiabatic ap-
proximation of Eq. (2) ignores higher-order (in V„„„s)
processes in which intermediate nuclear or neutron states
are virtually excited and deexcited. Although such terms
would alter our potential, we do not expect extremely
large changes. Any coherent (higher-order) one-body po-
tentials must be independent of the nuclear spin I, and
therefore can affect I-dependent correlations only when
acting together in perturbation theory with some other
I-dependent force. Higher-order contributions to U that
are themselves I dependent should be suppressed by
amounts typical of Bruckner-Bethe-Goldstone perturba-
tion theory. Additionally, working in a deformed basis
takes into account at least some of the important nuclear
correlations. Our potential is therefore probably correct
to within factors of order unity.

Several times we have noted that T odd potentials g-en-

erated by the core will not contribute by themselves to
I-dependent observables in lowest order. This statement,
which is true whether the potentials are P even or P odd,
does not, however, appear to be relevant for epithermal
neutrons because in a compound nucleus I-dependent

terms can no longer be treated as perturbative corrections.
On the other hand, because of the complicated structure
of compound-nucleus resonances, there is no simple con-
nection of the kind established here between experimental
observables and T-odd forces. It therefore remains to be
seen whether experiments with epithermal neutrons can
constrain TVPC couplings as reliably as experiments at
higher energies.
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