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Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2 + 1 Dimensions
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It is shown that in 2 + 1 dimensions, a constant magnetic field is a strong catalyst of dynamical flavor
symmetry breaking, leading to generating a fermion dynamical mass even at the weakest attractive
interaction between fermions. The effect is illustrated in the Nambu —Jona-Lasinio model in a magnetic
field. The low-energy effective action in this model is derived, and the thermodynamic properties of
the model are established.
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The condensate is expressed through the fermion propa-
gator S(x, y) = (0!T['It(x)'It(y)]!0). The propagator S can
be calculated by using the Schwinger (proper time)
approach [4]. It is

Relativistic field models in (2 + 1)-dimensional space-
time have been a subject of considerable interest: Their
sophisticated dynamics is interesting in itself; they also
serve as effective theories for the description of long
wavelength excitations in planar condensed matter sys-
tems [1,2]; also, their dynamics imitates the dynamics of
(3 + 1)-dimensional theories at high temperature.

In this Letter, we will show that a constant magnetic
field acts as a strong catalyst of dynamical flavor symme-
try breaking in 2 + 1 dimensions, leading to generating a
fermion dynamical mass even at the weakest attractive in-
teraction between fermions. We would like to stress that
this effect is universal, i.e., model independent, in 2 + 1

dimensions. This point may be important in connection
with considering this effect in such condensed matter phe-
nomena as the quantum Hall effect [1] and high tem-
perature superconductivity [2] and in (3 + 1)-dimensional
theories at high temperature.

Let us begin by considering the basic points in the
problem of a relativistic fermion in a constant magnetic
field B in 2 + 1 dimensions. The Lagrangian density is

L = —[4', (iy"D„—m)qt], (1)
where the covariant derivative D„ is

S(x, y) = exp! ie A~"'dz"!S(x —y), (4)
y )

where the integral is calculated Hong the straight line, and
the Fourier transform of S(x) (in Euclidean space) is

2 tanh(eBs) &

!S(k) = —i ds exp —s! m + k3 + k
0 eBs )

1—k~y„+ m + —.(k2y1 —kt y2) tanh(eBs)

1
1 + —.y1y2 tanh(eBs)

l

(k3 = ikp a—nd y~ are anti-Hermitian matrices). The
condensate is

(0!'I'P!0)= —limtrS(x, y) = — tr d kS(k)
(2n.)'

4m= —lcm dk dsA-- (2m.)' i/A2

2 tanh(eBs) l
!X exp —s m +k3+

eBs )
leal

m~O 6

(A is an ultraviolet cutoff). Thus in a constant magnetic
field, spontaneous breakdown of the U(2) symmetry takes
place even though fermions do not acquire a dynamical
mass. We note that in 3 + 1 dimensions, the result would
be (0!%%!0)—m lnm .-0 as m 0. Therefore, this is
a specific (2 + 1)-dimensional phenomenon.

What is the physical basis of this phenomenon? In
order to answer this question, we note that the singular,
1/m, behavior of the integral in Eq. (6) is formed at
large, s ~ ce, distances (s is the proper time coordinate).
Actually, one can see from Eq. (6) that the magnetic
field effectively removes the two space dimensions in
the infrared region, thus reducing the dynamics to a
one-dimensional dynamics which has much more severe

xD~ = B~ —ieA', A'„"' = Bx28~1. (—2)
We use four-component spinors corresponding to a re-
ducible representation of the Dirac algebra [3]:

tr31 i 0 itri )
0

(3)

At m = 0, the Lagrangian (1) is invariant under the
flavor U(2) transformations with generators Tp = I, T~ =
y, T2= —,. y, and T3=y y, where y =iy y'y y.
The mass term breaks U(2) down to U(1) X U(1) with
generators To and T3.

Our basic observation is that in 2 + 1 dimensions, as
m ~ 0, spontaneous U(2) symmetry breaking takes place
for fermions in a constant magnetic field. In order to
prove this, we will show that in the limit m 0, the Aavor
condensate (0!4'qr !0) is nonzero: (0!'Ir0"!0)= leBl/2n. . —
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infrared singularities. From this viewpoint, the action of
the magnetic field in this problem is similar to that of the
Fermi surface in the BCS theory [5].

This point is intimately connected with the form of the

energy spectrum of fermions in a constant magnetic field.
In 2 + 1 dimensions, it is [6]

E„= ~pm + 2leBln, n = 0, 1, . . . (7)

(the Landau levels). Each Landau level is degenerate.
At the lowest level with n = 0, the density of states
is leBl//2n", at the levels with n ~ 1, it is leBl/rr. As
m 0, the energy Eo goes to zero, and, therefore, there is
the infinite vacuum degeneracy in this case.

By using the explicit solution for the field
in this problem [6], we find the charge operators

g; =
2 f d2x[%t(x'), T Ir(x)j connected with the broken

symmetry:

g, =i/(a, ', d,', d, ,-a,„)+igg
p n=l p

X (attic„„—et~a„z) + (bt~d„„—dt b„„)

g2=$(aopdo-p- O-,.op)+ gg
p n=l p

Here a„~,c„„(b„~,d„~) are annihilation operators of
fermions (antifermions) from the nth Landau level
[there are two types of fermions (antifermions) for
the four-component field 4]; the momentum k =
2rrp/Li (p = 0, ~1, . . .), Li is the size in the xi di-

rection. A set of the degenerate vacua l8i, 82) is

l8i, 82) = exp(igi Hi + ig282)l0), where l0) satisfies
the condition a„„l0)= b„~l0) = c„„l0)= d„~l0) = 0.
As Li ~, the vacua with different (Hi, 82} become
orthogonal and define (as usual in the case of spontaneous

symmetry breaking) nonequivalent representations of
canonical commutation relations.

In each Fock space defined by a vacuum l8&, 82), there

are a lot of "excitations" with nonzero momentum and

zero energy created by the operators ao„, do~. However,t t

there are no genuine (i.e., with a nontrivial dispersion
relation) Nambu-Goldstone (NG) modes: At the lowest
Landau level, the energy E —= 0 (since the Lorentz sym-

metry is broken by a magnetic field in this problem, there

is no contradiction with Goldstone's theorem). We shall

show below that even the weakest attractive interaction
between fermions and antifermions is enough to "resur-
rect" these modes (and a dynamical mass for fermions).

Let us consider the (2 + 1)-dimensional Nambu —Jona-
Lasinio (NJL) model with the U(2) fiavor symmetry

1
L = —4, (iy&D )W

+ —(4%)'+ (+iy'0)'+ (+y'0)', (8)
2

where D„ is the covariant derivative (2) and fermion
fields carry an additional, "color," index n = 1,2, . . . , N, .

This theory is equivalent to a theory with the Lagrangian
density

5 = —[P, (iy&D„)W] —4(o + y'r + iy'~)W

2

2Q
(o +rr +r)

(~ = -G%%, r = —G4y'q, ~ = —G@iy'0).
effective action for these composite fields is

The

As N, ~, the path integral over the composite fields is
dominated by stationary points of their action: BI'/Bo =
BI'/Br = BI'/Bn. = 0. We will analyze the dynamics in

this limit by using the expansion of the action I' in powers
of derivatives of the composite fields.

We begin by calculating the effective potential V.
Since V depends only on the U(2) invariant p2 = o.2 +
r2 + rr~, it is sufficient to consider a configuration
with r = m. = 0 and o independent of x. Then, using
the proper-time method [4], we find the potential from
Eqs. (4), (10), and (11):

(702 O 2

v(~) = + v(~) =
2G 26

dS q~2

l e ' eBs coth(eBs) .
/A2

W,+

(12)

The gap equation dV/do. = 0 is

2All ———ir =
(g gcj

0 & 1 (o-l)'&

lo-ll
+ ~2~pl —,1+

k2 2

+ O(1/A), (13)

where the dimensionless coupling constant g —=

N, (A/rr)G, g, = J~, l —= 1/leBl'l is the magnetic

length, and g is the generalized Riemann zeta function

[7]. As B ~ 0(l ~ cc), we recover the known gap
equation [8]

o. lo-l = crA ——— (14)
(gc g)

which admits a nontrivial solution only if g is super-

critical, g & g, = ~n. [as Eq. (9) implies, a solution to
Eq. (14), cr = ~r, coincides with the fermion dynamical
mass o = mdy„, and the dispersion relation for fermions
is Eq. (7) with m replaced by o.]. We will show that

a magnetic field changes the situation dramatically: At
8 + 0, a nontrivial solution exists at all g ~ 0.

We shall first consider the case of subcritical g, g ~
g, , which in turn can be divided into two subcases: (a)

1 d3 (
' +,' + ~') + 1(o .~),26

(10)

where

I'(o. , r, rr) = —iTr Ln[iy~D„—(o+.y r + iy ~)].



VOLUME 73, NUMBER 26 PHYSICAL REVIEW LETTERS 26 DECEMBER 1994

g « g, and (b) g g, —0 (near-critical g). Assuming
that icrli « 1 at g « g„we find from Eq. (13)

JeBig ~n.
(15)

2A(g, —g)

Since this equation implies that the condition io.li « 1

fulfills at all g, satisfying (g, —g) » ieBi'/ /A, the
relation (15) is actually valid in that whole region.

At g, —g ~ ieBi'/2/A, introducing the scale m' =—

2A(1/g —1/g, ), we find the equation

m'l = + +&gl —, + I i,
1 ( 1 (1rl)2

I~ll &2 2

which implies that in the near-critical region mdy„ is

yn =0

(16)

mdyn 1r —leBI' ' . (17)
Thus in the scaling region, with g, —g ( ieBi' 2/A, the
cutoff disappears from the observable md„„. This agrees
with the well-known fact that the critical value g, = ~m.

is an ultraviolet stable fixed point at leading order in 1/N,
[8]. The relation (17) can be considered as a scaling law
in the scaling region.

At g ) g„ the analytic expression for md„„can
be obtained at weak ieBi, satisfying the condition

(O) (eB)2
Nldyn H wdyn 1 +

~O)
12(mg„„)4

(18)

i.e., md„„ increases with B [9].
Let us now turn to calculating the kinetic term Li, in

the action. The U(2) symmetry implies that the general
form of Xq is

FP FP
Lk = N,

'
(8 p, &, p, ) + N, (p/B„pl)(p;B, p;),

2 p
(19)

where p = (o., r, m.) and F1,F2 are functions of p2 =
g 2 + r2 + m2. To find the functions F1,F2, one can
use different methods. We used the method of Ref. [10].
The result is F1 = gI""F1", F2 = g""F2" with

ieBi'/ /md„„« 1, where md„„ is the solution of the gap
equation (14) with B = 0. Then, using the asymptotic
formula [7]

1 z —1
g(z, q), .-, 1+ +'"z —1q''- 2q

we find

FOO
1

F11 F22
1 1

FOO
2

F11 F22
2 2

3 (pl)'
8~ ~2 (2 2

1

4mp
'

(pl)2 (5 (pl)2
16m 2+2 i 2' 2 )

(3 + 1 + v2(pl) g —, + 1 + 2pl —(pl)
87r ~2 (2' 2 ) (2 2 )

(2o)

By using the asymptotic formulas for zeta functions [7],
we find the following spectrum for the excitations o., r,
and m from Eqs. (12), (19), and (20).

(a) Subcritical, g & g„region:
At g, —g » ieB('/2/A [where icrli « 1, see

Eq. (15)] we find

E,.= &2(el) (k')'/' =, (k')'/' (21)
gieB)1/2

+2A(1 ——)

where

E,, = f(ul)(k')'/', (23)

( 2 ) 1/2 -
1 ( 3 (1rl)2 i

- —1/2

f(~l) =i = I gi-, + Il+(~l) '
(1rli +2 k

2' 2

Since in the near-critical (scaling) region the parameter cr

is o. —(eB['/2 = l ', we see that the cutoff A disappears
from the observables E, and E in the scaling region.

(b) Supercritical g, g & g„and weak B(l ~):

8~2 1 —
—,
'' AieBi'/' (22) E,.=

~,
1 —,, i(k')'/', (24)

[see Eq. (15)]. Thus r and m are gapless NG models.
As the interaction is switched off, g 0, their energy
becomes identically zero, and we return to the dynamics
with spontaneous flavor symmetry breaking but without
genuine NG modes discussed above. Also, as g 0, the
o. mode decouples (M ~).

In the near-critical region, with g, —g ( ieBi'/2/A,
we find from Eqs. (19) and (20)

2( 3 1

4 (a.l)2/' (25)

where o is given in Eq. (18). These relations show that
the magnetic field leads to decreasing both the velocity
of the NG modes (it becomes less than 1) and the mass
(energy gap) of the o. mode.

As is known, in this model, an interacting continuum
(A ~ ~) theory appears only at the critical value g = g,

3501
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(the continuum theory is trivial at g ( g, ) [8]. At B = 0,
the continuum theory is in the symmetric phase at g
g, —0 and in the broken phase at g g, + 0. On the
other hand, as follows from our analysis, in a magnetic
field, it is in the broken phase both at g g, —0 and

g g, + 0 (though the dispersion relations for fermions
and collective excitations p are different at g g, —0
andg g, + 0).

The present model illustrates the general phenomenon
in 2 + 1 dimensions: In the infrared region, an external
magnetic field reduces the dynamics of fermion pairing to
one-dimensional dynamics (at the lowest Landau level),
thus catalyzing the generation of a dynamical mass for
fermions. A concrete sample of dynamical symmetry
breaking is, of course, different in different models.

We also studied the thermodynamic properties of the
NJL model (8) at finite temperature T and finite fermion
density n In .leading order in 1/N„we found that the
effective (thermodynamic) potential is

2 oc

2G 4m i I 0 t3i2

p )2)
X 04 Jzp(2 4~t 1) )' (26)

where p = 1/T, p, is a chemical potential, and 04 is
the fourth Jacobian theta function [7]. The analysis
of Eq. (26) shows that there is a symmetry restoring
(second order) phase transition both at high tempera-
ture and high density. The critical temperature T, is
T, —m4„„, and the critical density n, is n, = ieBi/2m at

g ~ g, = ~m. (corresponding to the filling of the lowest
fermion Landau level), and n, ) ieB[/27r at g ) g, .
We recall that there cannot be spontaneous breakdown
of a continuous symmetry at finite (T ) 0) temperature
in 2 + 1 dimensions (the Mermin-Wagner-Coleman
(MWC) theorem [11,12]). In the NJL model, the MWC
theorem manifests itself only beyond the leading order in

I /N, . A plausible hypothesis, we believe, is that beyond
this order, the phase transition at T = T, —mdy„

will become the Berezinsky-Kosterlitz- Thouless
(BKT) type phase transition [13], and, in particu-
lar, at 0 ( T ~ T„the NG modes 7 and m. will transform
into BKT collective modes.

In this Letter, we considered the dynamics in the pres-
ence of a constant magnetic field only. It would be

interesting to extend this analysis to the case of inhomo-
geneous electromagnetic fields in 2 + 1 dimensions (for a
recent consideration of this problem see Ref. [14]).
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