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J. Toulouse, B.E. Vugmeister, and R. Pattnaik

Physics Department, Lehigh University, Bethlehem, Pennsylvania 18015-3184
(Received 17 June 1994)

The relaxor behavior is characteristic of the class of disordered ferroelectrics. These systems possess
a high dielectric constant with a broad relaxation peak and a low frequency dispersion. Because of
their complexity, there exist various explanations for their dielectric and polarization behavior, but no
unifying model. In the present paper we show that the simpler system, Kl „Li,Ta03, is also a relaxor
and a generic one at that. We describe its dynamical behavior with a general microscopic model
and show that the relaxor behavior is intrinsically due to the dipolar interaction between randomly
distributed off-center ions mediated by a highly polarizable lattice.

PACS numbers: 77.80.—e, 64.60.—i

In the large family of ferroelectrics, a new group has
been identified. They are mixed and disordered ferro-
electrics called "relaxors" such as PbMg~ ~3Nb2p03 (PMN)
or PbSc~y2Ta~y203 (PST). Relaxor ferroelectrics possess
very unusual properties which have been the subject of
several recent investigations [1—5]. Their most intriguing
property is a very large dielectric constant with a broad
relaxation peak and a low frequency dispersion. In the
early studies on relaxors [6], this peak was viewed as the
mark of a ferroelectric phase transition, which, because of
the frequency dispersion, was said to be diffuse. In a re-
cent birefringence study [1] of PMN, the apparently dif-
fuse character of the phase transition has been attributed
to the presence of quenched random fields while, in an-
other study [3], the broad dielectric relaxation peak has
been interpreted as a sign of glassy behavior and spin glass
models have been invoked. In the case of PST, a recent
study [7] has revealed, in addition to the relaxor behav-
ior, a sharp drop in the dielectric constant which has been
interpreted as a spontaneous transformation from relaxor
to ferroelectric. This diversity of interpretations is due to
the fact that, so far, there does not exist a general micro-
scopic model capable of describing the generic behavior of
all relaxors. Moreover, of the proposed phenomenological
models [8—10], none can simultaneously predict the very
large dielectric constant which is a sign of, at least, incipi-
ent long-range order, and of the low frequency dispersion,
characteristic of disordered systems. One of the obstacles
in understanding the behavior of relaxors has been their
complex structure, with the imbalance in valence of the
two central atoms and the existence of chemically ordered
and electrically charged regions [11]. It is therefore de-
sirable to find a simpler system which nevertheless also
displays the relaxor behavior and on which a microscopic
model can be tested. Here, we propose Kl Li,Ta03 as
a new prototype for relaxors, describe its dynamics using
a microscopic model which should be also applicable to
other relaxors, and point out the specificity of different
relaxors.

K& „Li,Ta03 (KLT) belongs to the same perovskite
family as PMN and PST, yet it has the great advantage that

K and Li are simple ions and both carry the same charge.
The most important characteristic of KLT is the (100) off-
center location of Li+ which therefore carries an electric
dipole moment [12]. In the typical relaxor PMN, Pb2+ has
also recently been found off-centered in the (110)direction
and Nb5+ in the (111)and (110)directions [13,14]. Here,
we first show that the essential features of relaxor behavior,
i.e., a large dielectric constant, a broad relaxation peak with
a low frequency dispersion, and a slim hysteresis loop in

the polarization, are all observed in KLT where they can
also coexist with a structural transition.

In order to demonstrate the relaxor character of KLT, it
is appropriate to compare its dielectric behavior with that
of PMN and PST, both well-recognized relaxors. This is
done in Fig. 1 where the frequency dispersion of the di-
electric peak is clearly apparent for all three systems. For
Li concentrations greater than the critical concentration of
2.2% Li, KLT behaves as disordered but stoichiometric
PST. In this case, the dielectric constant exhibits a sud-
den drop at a frequency-independent temperature. Raman
[15] and neutron scattering [16] studies of KLT have also
clearly shown the existence of a structural transition at the
same temperature. By contrast, as was shown in the di-
electric study of KLT reported in Ref. [17], the drop in
the dielectric constant is not observed below the critical
concentration just as it is absent in PMN or in PST with
Pb vacancies. In PMN, neither the dielectric constant nor
Raman scattering, or even x-ray diffraction, have revealed
a transition for zero electric field [18]. Therefore, below
the critical concentration, KLT behaves more like PMN
or like PST with Pb vacancies.

From the above comparison one can clearly see that
KLT does indeed belong to the family of relaxors and,
in fact, can be studied as a generic system of this family
since it exhibits both a strong frequency dispersion and
a structural transition or not, depending upon the Li
concentration. We now show that the relaxor features
of KLT as well as its transition can be described by a
microscopic model [19] that takes into account exactly
the pairwise interaction between neighboring off-center
Li ions (forming a cluster) and uses a random local
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in which eo is the high frequency dielectric constant of the
doped crystal [21] and r, is th. e noncritical polarization
correlation length (r, —~op). The first term in K(r) is
an essential feature of the indirect interaction between
dipoles, mediated by the highly polarizable lattice. The
dipolar order parameter is then written as:
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field approach developed earlier by one of us [20] to
describe the interaction between these and more distant
off-center ions. Such an approach is a generalization of
the well-known Bethe-Peierls cluster theory for systems
with configurational disorder.

Due to the high polarizability of the lattice, each off-
center ion carries an effective dipole moment, d*, which
interacts with all the other dipoles. The Hamiltonian of
the dipolar system is then written [20]

H = —
z gK;jl; LJ

—pl;(E," + e)—:—g l;(E; + e),

FIG. 1. Dielectric constant of KLT, PMN, and PST showing
the typical frequency dispersion observed in relaxors. The
PMN and KLT data are from the present work and are
comparable to data found in Refs. [4] and [17], respectively.
The PST data are from Ref. [7].
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where vo is the reorientation frequency of a single
dipole, experimentally shown to follow an Arrhenius law

[12]: pp = rp e and Udd = 2K(r~2). The central

dynamical equation is then written as

= —[«2(t)& —
&l &.".,], (6)

8 l)2 t 1

L =(t, ),
where the brackets and the bar, respectively, denote a ther-
mal average and an average over random spatial config-
urations of off-center ions. The distribution function of
local fields f(E;), that enters into the calculation of L, can
be written as a convolution of the distribution function

fd(E, ) of the dipolar fields E; = g, K;, l, and the distri-
bution function f, (E ) of t.he extra random fields E,' We.
assume here that f, (E,') is a Gaussian of width B. In KLT,
the width of f, (E,') is found to be much greater than the
width of fd(E;") [22] so that the overall distribution func-
tion can be written as

f(E;) = [@2'6] ' exp[ —(E; —EpL) /26 ],
where Ep = 4m nd*/ep with n the concentration (per unit

volume) of off-center ions.
In the description of the dynamics, we consider pairs

of neighboring dipoles (although not necessarily nearest
neighbors) for which we define (1['~& =—(l/ + l2)/2. The
interactions of each dipole in a pair with all other more dis-
tant dipoles are described in the framework of the random
local field theory outlined above. The dynamics of pairs is
described in the framework of a Glauber model, neglecting
the small probabilities for the simultaneous reorientation of
both dipoles in a pair. Therefore, the reorientation of a pair
is assumed to take place in two steps, through an interme-

diate excited level, as shown in Fig. 2. The reorientation

frequency of a pair of neighboring dipoles is thus given by

where l; = d*/~d*~ is a unit vector along the direction
of the dipole moment located at r;, e is the external
electric field, and F.,' is an extra random field that must
be included in order to describe properly the experimental
results, the origin of which is discussed later in the paper.
Assuming, for simplicity, Ising-like dipoles (l; = l;. =
+ 1), the coupling constant, K;, = K(r;, ), is calculated to
be [20]
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where (l~q)e+, is the quasiequilibrium orientation of the

pair in the field, E + e. The next step is to average

Eq. (6) over the distribution of random internal fields and

over the distribution of potential barriers, Udd. To do

this, we rewrite it in integral form and consider only

the steady state regime in an oscillating external field,

e(t) = ep cosset:

L(r) = (l~.(t)& =—,L~z(t —t') dt' (7).lt Q(t') eq

tl
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FIG. 2. Energy level diagram of a dipole pair showing the
interaction energy, Udd [see Eq. (5)].
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(8) FIG. 3. Experimental (points) and calculated (solid line)
dielectric constant of KLT (x = 3.5%) for three different
frequencies.

and
+oo

L~z(t —t') = dE ft,E + e(t —t')

EpL(t ——t')) (l&2)~ (9)
teresis loops for two frequencies are compared in Fig. 4.
The calculated loops are obtained from Eq. (11),using the
same values of the parameters as those given above for
the dielectric constant. Of particular significance is the
frequency dependence of these loops at zero field. The
polarization observed at zero field is clearly not a sponta-
neous polarization in the usual sense, but it is only rem-
nant because of the slow relaxation of interacting dipoles.
When cycled at a lower frequency, the dipole pairs are
given enough time to thermally disorder, and the remnant
polarization decreases accordingly, while at the higher fre-
quency more polarization is retained when the field goes
through zero. The weaker frequency dependence obtained
in the calculated loops is tentatively attributed to the pres-
ence of a small fraction of nearest-neighbor Li dipoles, not
included in the calculation, with an extremely long relax-
ation time [17,24]. Similar hysteresis loops are obtained

with f being Gaussian according to Eq. (4). It is im-

portant to note that the configurational average in Q(t) is
taken over the relaxation function and not just over the re-
laxation time. Consequently, the average relaxation func-
tion Q(t) is not exponential and gives rise to the slow

dynamics observed. Taking the Fourier transform of
Eq. (7) in the limit ep 0, we obtain the susceptibility
g(cu) and the dielectric constant e(co):

BL(cu)
e(tp) = ep + 4rrnd g(cp). (10)

Bep

The polarization P(tu, ep) can also be obtained from
Eq. (5), since

P(cu, ep) = nd L(ru, ep).
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FIG. 4. Measured and calculated hysteresis loops of the
polarization in KLT (x = 3.5%) for two different frequencies
atT =67K.
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In the following, the nonlinear response L(co, ep) has been
obtained by numerical integration of the self-consistent
Eq. (7).

We note that the model strictly contains only one in-
dependent parameter, d*. The other parameter, the ratio
Ep/8 —= z, can be calculated from within the model sim-

ply using the experimentally determined critical concen-
tration, x„=2.2% [23]. This calculation yields the same
value as that obtained from the fit below. The values
for rp = 1.6 x 10 '3 s and Ud = 910 K have been taken
from previous studies [12]. In Fig. 3 we compare the
experimental dielectric constant of KLT (x = 3.5% Li),
measured at three different frequencies, with the calcu-
lated dielectric constant obtained from Eqs. (5)—(7) with
d* = 8e A and z = 1.4. The agreement is seen to be
very good with regards to the positions and the increase
in height of the peaks. The shapes of the three peaks also
agree well on the high temperature side. The model pre-
dicts a transition at T, = 47 K, in very good agreement
with the observed T, .

The model also predicts the existence of hysteresis
loops for the polarization in the same temperature range
as the dielectric relaxation. Calculated and measured hys-
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in PMN, also in the dielectric relaxation range and with a
similar frequency dependence, again supporting the com-
mon relaxor character of both KLT and PMN.

We now comment on the discrepancy between the mea-
sured and calculated relaxation peak, close to the transition.
The model, in its present form, predicts a second-order
phase transition, while it has been conclusively shown by
different experiments [17,25,26] to be first order. This
limitation of the model could be possibily eliminated by
taking into account the elastic quadrupole moment of the
off-center ions. In fact, it has been shown previously [27],
in the mean field approximation, that the existence of the
quadrupolar moment of the off-center ions induces ad-
ditional electrostriction, leading to a first-order transition
rather than a second-order one. Nevertheless, the good
agreement between experiment and theory, for both the
positions and the heights of the peaks at different frequen-
cies, supports the present physical model as a basis of re-
laxor behavior. In this model the relaxor behavior is due
to strong pairwise interactions between random off-center
ions in a highly polarizable host lattice.

The final question to be answered is: Why do some
relaxors eventually undergo a phase transition and others
do not? The answer can be found in the value of the ratio
Ep/8, i.e., in the strength of the ferroelectric interaction
between dipoles relative to that due to extra random fields.
As we have already discussed, there exists a critical ratio,
z(x„) = (Ep/6)„„, below which no transition occurs. As
shown in the dielectric constant of Ref. [17], no drop in

the dielectric constant of KLT is observed in a crystal
with x = 1.5% Li. KLT then behaves much like PMN
or PST with Pb vacancies. On the other side, for x &
x,„(2.2/o Li), KLT exhibits both the relaxor behavior
as well as a transition and behaves like stoichiometric
disordered PST. While it appears possible to explain the

presence or absence of a phase transition in relaxors
on the basis of a single ratio Ep/8, the extra random
fields determing 6 may have different physical origins.
In KLT, we have suggested that they may be related to
the elastic quadrupole moments of the off-center ions and

their associated strains. These may also be present in PST
and PMN. In addition, an obvious candidate in PST are
the Pb vacancies. In PMN, 1 to 1 Mg-Nb ordered regions
of average radius, 30 A. , are present and charged [8], also
contributing random electrostatic fields.

In conclusion, KLT exhibits the characteristic dynami-
cal behavior of a relaxor. This behavior is well described
by a model based on indirect dipolar interactions be-
tween randomly distributed off-center ions, mediated by
a highly polarizable lattice. However, a quantitative de-
scription of the experimental results necessitates the as-
sumption, in addition to the random dipolar fields, of ex-
tra random fields which may have different origins in dif-
ferent relaxors. The width 6 of the distribution of these
extra random fields, relative Fo, determines whether or
not a phase transition can take place. The transition in
relaxors does not correspond to the maximum of the di-
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electric constant and it is not diffuse, but it is clearly
identifiable as a distinct frequency independent feature
in the various susceptibilities.
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