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The Boltzmann equation for electrons in semiconductors at room temperature is recovered from
nonequilibrium Green s functions. Our approach eliminates gradient corrections to scattering rates,
reduces "possible" collisional broadening, provides backflows, and allows one to evaluate scattering
rates of two-phonon processes.
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The Boltzmann equation (BE) [1],
Bf Be Bf Be Bf—+ — — —— =I —I (1)
Bt Bk Br Br Bk

is the most useful theoretical tool of nonequilibrium sta-
tistics. It links a macroscopic phenomenological picture
of an interplay between diffusion and dissipation with a
microscopic theory of these processes.

A theoretical challenge is to derive this equation as a
quasiclassical limit of the nonequilibrium quantum statis-
tics. Although this limit has a lot of general features,
there is no general theory which would cover all (at least
fermionic) systems. Instead, there are a number of spe-
cial approaches to individual systems and a corresponding
number of criteria for the validity of the BE. The elec-
tron gas in nondegenerate semiconductors is covered only
by theories on the level of the Kadanoff and Baym (KB)
ansatz [2]. These approaches are not sufficient to guar-
antee the validity of the BE in wide gap semiconductors,
say GaAs or Si, at room temperature. Here we advance
the original KB approach in two directions. First, we
eliminate some frustrating weaknesses. Second, we de-
rive a new generating functional for scattering rates which
works also for two-phonon processes.

As a guide to the KB approach, we recall the theory
of metals. As visualized by Landau, the structure of a
transport equation for electrons in crystals is identical to
the BE. However, physical quantities entering such an
equation are not associated with (bare) electrons but with
electron1ike elementary excitations —the quasiparticles
[1]. Thus, to derive the BE one has to define a function
which can be interpreted as the quasiparticle distribution f,
prove that f obeys the BE, and express observables in
terms off. This program has been fulfilled with the help
of many-body Green's functions [1,3].

The theory of metals benefits from the high density
of particles, which implies that the only excitations
accessible at room temperature are fast quasielectrons
and slow acoustic phonons. In this particular regime,
the perturbative expansion in the electron-electron and
electron-phonon interactions simplifies to self-consistent

single-loop diagrams in the spirit of the random phase
approximation and the Migdal theorem.

Another simplification following from the high density
limit is that the quasiparticle distribution can be defined
as an integra1 over the bare electron kinetic energy e-
k2/2m from the single-electron Green's function [3]

f —= G (to, k, r, t).d6
(2)

The definition (2) allows us to derive the BE simply by
taking the integral over e from the KB equation

[G ' —X, G ]+[G,X ]=AX —IG (3)

Here and below, all functions depend on an energy
co, momentum k, coordinate r, and time t, i.e., G
G (to, k, r, t) The Po.isson bracket [A, B] —= B AB,B
B,AB„B —BkAB„B + B„ABt,B is a shorthand notation for
the gradient approximation of commutators. The spectral
functions of the single-electron propagator and self-energy
are denoted by A —= i(G" —G") and I" —= i(X" X"),—
respectively. The functions X —= 2(X~ + X") and G —=

z(G~ + G") are corresponding real parts, and Gp
co —e —U, where U is an internal potential. After the
integration over the kinetic energy e, the Poisson bracket
[Gp X, G ] turns into the diffusion term [the left
hand side (LHS)] of the BE (1), AX -. 1;„,I G
l,„„and the Poisson bracket [G, X ], alien to the BE,
vanishes in the high density limit. All elements of the
self-energy (X, , I, and X) are functionals of G~, but
convolutions with weakly momentum-dependent bosonic
Green's functions allow us to use f instead of G . In this
way one arrives at a closed equation forfwhich is the BE,
see [3].

An electron gas in semiconductors, unfortunately, does
not belong to this limit. Since slow quasielectrons are
thermally activated, the definition (2) of the quasiparticle
distribution does not work and the term [G, X ] does not
vanish. Moreover, the Migdal theorem does not hold
for optical phonons, and one has to be ready to handle
multiphonon processes. In spite of these complications,
we believe that Landau's vision of quasiparticles applies
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also to semiconductors and that a more general theory
covering the two systems can be developed.

A draft of the theory which treats metals and semicon-
ductors equally has already been proposed by Kadanoff
and Baym [2]. They have introduced the ansatz [based
on the equilibrium relation G (~, k) = fFD(~)A(~ k)l

G (~, k, r, t) = f(k, r, t)A(cu, k, r, t) (4)

= f(k, r, t)2m z(k, r, t)

X B(cu —e(k, r, t)), (5)
where z

' = 8 (Go
' —X,) = 1 —8 X. Using its form

(5) in the KB equation (3) and neglecting the nonsingular
term [G, X ], they have obtained the BE with no regard to
the electron density. In contrast to the theory of metals,
this approach does not guarantee the validity of the BE
because of the following shortcomings.

(A) There is no estimate saying under which conditions
[G, X ] can be neglected. This term is expected to
provide gradient corrections of scattering rates.

(B) The ansatz (5) is an approximation of (4), but the
form (4) does not lead to the BE without this additional
approximation [3]. In particular, using (4) one violates
the energy conservation of individual collisions [4].

(C) From the reduced density matrix p —=

f(d cu/2m )G one can evaluate all single-electron
observables, but (4) or (5) are too crude as approxima-
tions of G». For instance, there is no backflow and form
(5) fails to provide the correct number of particles.

(D) Multiphonon scattering rates are incorrect. These
problems are really artifacts of the KB approach because
they persist also in the high density limit while the theory
of metals is free of (A) —(C). The problem (D) appears
in the theory of metals too, but it is ignored in the spirit
of the Migdal theorem. All the problems (A)—(D) point
to the same property of the Green's function neglected
by the KB ansatz: (A) the Poisson bracket [G, X(] is
an off-pole term; (8) form (5) differs from (4) in the
off-pole region; (C) the backflow and missing particles
are hidden in the off-pole part of G; and (D) it is a
missing off-pole propagation between two consecutive
"single-phonon" processes which makes the two-phonon
scattering rates incorrect.

Apparently, we have to fix the off-pole part of G(. To
this end, however, we have to change our attitude towards
the KB approach. Their theory includes two kinds of
approximations, the ansatz itself and the omissions in the
transport equation. The two kinds are closely related.
One can dream of an ansatz which directly solves the
KB equation; therefore no approximation of (3) would
be necessary. Such a task is unrealistic, and we have to
distinguish which phenomena can be better approximated
on the level of an ansatz and which phenomena have to
be solved from the transport equation. The basic key for
this distinction is given by two time scales inherent for
systems with quasiparticles: the long (hydrodynamical)
and short (collision duration, quasiparticle formation) time
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scales associated with the pole and off-pole parts of
G, respectively. The ansatz is constructed from the
quasielectron (and boson) distribution at the instant t.
Therefore it can provide reliably only the behavior of
G in the vicinity of t. Thus the short time phenomena
should go into the ansatz. The differential transport
equation deals primarily with the long time phenomena.
Accordingly, the ansatz has to have at least two parts: a
pole contribution similar to (5) which solves the pole part
of the KB equation provided that f solves some auxiliary
Boltzmann-like transport equation and an off-pole part
which solves the KB equation far from the pole. In other
words,

G =fA+BG (6)

\

[I GRX(GR GAX(GA] (8)

Here, the first term is dominant. Thus the function

$G( (GRX(GR + GAX(GA) (9)
2

is the off-pole part of G . Indeed, far from the pole
both propagators become real, GR = G" = G. Therefore
G( = GRX(GA = GX(G = gG»

Now we can specify W. The function G —BG
is a "quasiparticle" correlation function. In equilibrium,
G —BG = fFDA, where.
~ = A ——(GRI'GR + GAI GA)

1

2
(10)

I '/2

[(G. ' —X)' + I'/4]'
is a quasiparticle spectral function. The ansatz (6) is in
this sense a pole approximation of G —6'G . From
(11) one can see that the quasiparticle spectral function
A. is a better 8 function than A, because far from the pole
A. —(co —a) while A —(a) —e) 2.

The approximation of G on the short time scale is
already specified by BG, Eq. (9), and A. , Eq. (10).
Now we turn to approximations on the long tIme scale.
According to our expectation, a substitution of BG from

(9) should make the KB Eq. (7) free of all off-pole terms.

where A. = 27rzB(cu —a) and BG is an off-pole cor-
rection. A choice of A, can be motivated by a form of
the KB equation derived by Botermans and Malfliet [5],
Eq. (2.109). We find it shorter to deduce the functions W
and BG directly from the KB equation (3).

Let us identify BG» first. After substitution of the
ansatz (6) into the KB equation (3), one finds

A[GO
' —X,f] + f[Go

' —X, A.j + [Go
' —X, BG ]

+ [G, X ] = AX —AI"f —I'BG. . (7)

The off-pole correction BG is fitted such that [Go '—
X, BG(]cancels the off-pole term [G, X ]. The latter can
be rearranged as

[G X(] = —[G-i X GRX(GR+ GAX(GA]1
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(12)
In the LHS we have disregarded the term [I, 2GA(I'f—
X )] which vanishes in the quasiclassical limit being
effectively quadratic in gradients. Indeed, from (12) one
can see that X —I'f is proportional to gradient terms.
This step has a very clear physical meaning: If there
are linear gradient corrections to scattering-in and -out
integrals, they mutually compensate, leaving only the term
proportional to gradients of the distribution f.

To complete the derivation of the auxiliary equation,
we integrate (12) over cp. The pole of A. is at

1 BI
s = ep —z I (13)

4 8 CJO QJ g0

where ap is a root of Gp
' —X = 0, i.e., ap = t + U +

X =„. In the pole approximation one finds that the first

term of (12), f 2 A.[Gp —X,f] = a,f —[ep, f], gives
the diffusion term known from metals, and the second
term, f 2 2GAI'[I, f] = [a ep, f], gives a correction
(13) to the quasiparticle energy. Apparently, the second
term in (12) is not alien to the transport equation, but it is
a vital part, making the diffusion term consistent with the
spectral function. If we approximate W by a 8 function,
see (11), the auxiliary equation we have obtained is just
the BE for quasiparticles

af ae af ae af—+ — ———= z(X —I'f).=..
Bt Bk Br Br Bk

The structure of the transport equation (14) is identical
to the BE (1). The quantities entering this equation,
however, are evaluated in a slightly different way than in
previous treatments. First, there are off-pole contributions
in the scattering integrals. Second, the quasiparticle
energy includes the correction (13).

Now we are ready to discuss to what extent we have
managed to get the four problems (A) —(D) under control.

(A) the term [G, X ] nearly cancels with other off-
pole contributions. The rest of this term does not result
in gradient corrections of scattering rates, but in a small
correction of the quasiparticle energy. This correction can
easily be understood in a complex energy plane. The
pole of the propagator G is given by 8g = 6 + U +
X (eti). The simplest approximation is ep, and a linear
correction is eg Bp =

2 I + (eg Bp)a„X . Since
the derivative of the self-energy is in general complex,
a X~ = a„X —2a I', the real part of e~ shifts into e,
Eq. (13). This shows that our theory makes only the
first step from the real axis but does not change the
interpretation of the quasiparticle energy.

(14)

If this is true, all terms left in the transport equation will

play a role on the long time scale, and we have to include
them in an auxiliary transport equation, even if they do
not match the structure of the BE.

Elimination of the off-pole part simplifies the transport
equation remarkably:

W[G ' —X,f] ——GAI [I',f] = A. (X —I f) .
1

(15)
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(B) Let us estimate what happens if we do not approxi-
mate A, by a 8 function. Within the KB approach one
obtains the so-called collisional broadening given by a
convolution of two spectral functions [4]. Starting from
(12), one finds identical expressions with A. substituted
for A. To estimate the difference between the A and W
broadening, we have evaluated the time evolution of an
isotropic and monoenergetic distribution of electrons scat-
tered by impurities. The elastic scattering cannot change
this distribution; therefore, a time evolution following
from the broadening is clearly an artifact of the theory.
The correct value of the distribution, Fs(e, t) = B(e —E),
we take as an initial condition at t = 0. For I t && 1, the
distribution spreads from the initial energy E as

2tI'2

(E,). + t21 4

4~ ( (E —~)2 l
f~(e, t) —

3
exp' —

3 ~. (16)tI'
~ tI'

The A broadening creates overestimated high energy
tails. Moreover, even in the low energy region, the
width of fA exceeds the thermal smearing after a time
given by tI'2 —k&T, which for a typical lifetime I/21' =
10 '2 s and room temperature restricts the validity to
times shorter than 4 X 10 " s. Clearly, the ansatz (5)
does not follow from (4), because the results of the
two approximations are strikingly different. On the
other hand, with the A. broadening, the power-law high
energy tails are absent and the time after which the
width of f~ exceeds room temperature, Qtl'3 —kqT,
is 1.6 X 10 9 s. Unfortunately, our approach does not
rule out the collisional broadening, but it at least reduces
its extent. These estimates do not include inelastic
processes which reduce the artifacts of broadening. The
above characteristic times show how strong the inelastic
scattering rate has to be to keep the broadening negligible.
This provides the criterion, I;„,i(k&T) & (I',

~
+ I';„,~),

for when A. can be approximated by a 8 function. This
criterion is sufficient but overly restrictive. Nevertheless,
it is easily met in GaAs or Si at room temperature.
We note that the spectral function A. is a first term of
an expansion in small I, i.e., it is an imaginary part
of G~(cu —-'I') = G"(cp) + -'I G (tp) = -GAI' —-A. .
Provided one finds a way to generate corrections to the
ansatz which will give us the entire expansion, one arrives
at an exact 8 function. If we extrapolate experience from
the first step, such corrections will contribute to subtle
details of higher order scattering integrals while the 8
functions will be associated with initial and final states
just like in the BE.

(C) The functional p[f] evaluated from the ansatz (6)
includes the off-pole part

p= G =fz+ BG . (17)
dc' & dctP

2~ ' 2~
This off-pole part is only approximate. It is the first
term of the expansion in small I; thus it applies only
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for systems with a weak interaction, where = 1 +
B„X. Within this accuracy, (17) reproduces the backfiows
known from the theory of metals.

(D) Except for single-phonon processes, the scattering
integrals evaluated from the ansatz (6) differ from those
obtained within the KB ansatz (5). This is because I;„[f]
results from X [G j as

D (to —E)G (E)
277 2'

x D (E —p, )fA(p, ). (19)

The form of this contribution corresponds to the diagram

(d), which is missing in the KB approach. Note that

As BG depends on X, this nesting generates higher
orders in the interaction strength. Let us compare (18)
with the Fermi golden rule for the electron-phonon
scattering up to two-phonon processes.

The Green's function expansion is represented by the
self-consistent diagrams (a) and (b), the Fermi golden
rule by the non-self-consistent diagrams (c)—(e). The
scattering rates resulting from the KB ansatz are easily
reproduced if we neglect BG . In this approximation,
diagram (a) corresponds to diagram (c) and diagram (b) to
diagram (e). Keeping BG, we obtain a correction from
the nesting of diagram (a) into itself. From X~,)(to) =

f z D (to —E) G~(E), where D~ is a phonon Green's
function, we find that the lowest BG correction to X~„)
contributes to the two-phonon scattering rate as

X(g)(co) = D (to —E)G (E)X (E)2'

the intermediate propagation G'2' =
2

(GnGe + G G")
has only the off-pole part; therefore, a double count of
consecutive single-phonon processes is excluded.

%e have modified the original KB approach so that we
separate the pole and off-pole parts of the single-electron
Green's function. Although this is only the first step in

the small I expansion, it is sufficient to prove that the
Boltzmann equation holds for wide gap semiconductors at
room temperature. In particular, it (A) eliminates gradi-
ent corrections of scattering rates; (B) reduces "possible"
collisional broadening to a negligible extent; (C) provides
the observables in terms of the quasiparticle distribution
including backfiows; and (D) allows one to evaluate scat-
tering integrals of two-phonon processes.
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