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Experimental Evidence for Critical Dynamics in Microfracturing Processes
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We performed the statistical analysis of acoustic emission time series in the ultrasonic frequency
range, obtained experimentally from laboratory samples subjected to external uniaxial elastic stress.
We found a power law scaling behavior in both the acoustic emission amplitude distribution and
time correlation function, with exponents very close to those found in fracturing processes occurring
at different time and space scales. These facts strongly suggest the existence of a critical dynamics
underlying the process, which might be related to the idea of a self-organized critical state based on the

energy dissipation through all the length scales.

PACS numbers: 62.20.Mk, 05.40.4j, 91.60.L;j

Power law behavior in physical phenomena is usually
the fingerprint of temporal and spatial critical fluctuations
of which well known examples are Ising-like systems, frac-
tal growth phenomena, turbulence, etc. Unlike the usual
second order phase transitions, some of the previous exam-
ples exhibit a critical behavior without the need to fine tune
any control parameter; i.e., the critical state is an attractor
of the dynamics. A few years ago Bak, Tang, and Wiesen-
feld [1] termed this kind of situation ‘“self-organized
criticality” (SOC) and introduced a simple model of a
dynamically driven system, inspired by the dynamics of
sandpiles, that evolves spontaneously to a stationary criti-
cal state. This model is an example of SOC phenomenon
in which a system with short range coupling self-stabilizes
in a stationary state characterized by avalanches (activity)
with power law distribution functions. Hence, the system
has no characteristic length (and is therefore self-similar)
and is in this sense critical. The SOC concept has been
proposed also as a possible mechanism for the generation
of the so-called 1/f noise; however, it has been shown
successively [2,3] that the spatialtemporal scaling in the
SOC state does not necessarily manifest itself in nontrivial
exponents for the power spectrum.

Because of the importance of the SOC concept as a
possible unifying framework for a wide range of physical
phenomena, a lot of work has been devoted to studying
these systems through computer simulations, theoretical
approaches, and experimental findings [4]. In particular,
the SOC framework has been proposed as a possible in-
terpretation for the empirical observation of the energy
release in earthquakes [5]. In fact, existence of statistical
self-similarity in seismic processes is a well established
fact, which has its strongest evidence in the power law
behavior of the well known Gutenberg’s [6] and Omori’s
[7] empirical laws. Power law behavior was observed by
Mogi [8] in the distribution of the maximum trace ampli-
tude of audio signals emitted from samples subjected to
various forms of stress, in analogy with the Ishimoto Iida
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empirical relation [9]. Hirata [10] observed self-similarity
in the time frequency distribution of aftershock signals
due to fracturation of basalt under constant stress. More
recently, acoustic emission (AE) signals due to volcanic
activity [11] and fracturing processes in metal-hydrogen
systems during hydrogen precipitation were proposed to
be reconducible to a SOC mechanism [12]. For both phe-
nomena, the acoustic wave bursts show a power law dis-
tribution that seems related to an avalanche mechanism
peculiar of SOC systems. This mechanism is a sort of
“domino effect,” giving rise to a self-similar energy re-
lease on all length scales; more precisely from the small
scale that defines the microscopic relaxation processes to
the large scale of the system. As earthquakes and AE
phenomena are associated with fracturing processes on
various length scales, it might be possible that fracture
dynamics defines a class of SOC systems.

In this Letter, we report the measurements of AE [13]
in the ultrasonic range due to the microfracture aftershock
relaxation properties of laboratory samples subject to an
external macroscopic perturbation. Our measurements
confirm a power law behavior for the AE amplitude distri-
bution in all the experimental conditions and for all the
samples used. This experimental fact suggests that the
same critical dynamics can hold from the large scale of

- earthquakes down to the microscopic scale of the sample

rheological structure. We extend our analysis to the time
correlation function and the spectral density of the AE sig-
nal time series. Noticeably, we find a nontrivial scaling
in the power spectrum of the signal (1/f# noise), showing
that the fracturing process has scaling properties both in
space and time. To our knowledge, such statistical anal-
ysis of laboratory AEs coming from separate aftershocks
has not been done before.

The acoustic emission signals were detected during the
stressing of our samples. The samples used were cylinders
of synthetic plaster (Ancorfix 709), 30 cm long, 5 to 10 cm
diameter, with an iron bar of 2 cm diameter in their central
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axis, acting as a waveguide for the elastic radiation emitted
within the specimen. In order to test the independence of
the statistics in different experimental conditions, two dif-
ferent high sensitivity piezoelectric transducers have been
used, which were coupled to the iron bar on one of their end
sections. The maximum sensitivity of the two transducers
is at frequencies f; = 220 kHz and f, = 400 kHz, while
the bandwidth is Af; = 15 kHz and Af, = 50 kHz, re-
spectively. The sample was periodically stressed at a small
lateral region, in the radial direction, by a ball jointed pis-
ton that allows pressure increases of several hundred bars.
The acoustic energy release takes place through a series
of bursts which were finally detected by the piezoelectric
transducers. The signals were then fed through an am-
plifier into a short rise time (0, 2 us) peak detector, that
produces at its output the amplitude of the maximum burst
occurring within the discharge time At = 200 ms of the
detector. The data are then recorded and numerically pro-
cessed with a PC.

The externally applied stress and the following release
of energy generate a series of microfracturing processes
in the sample, producing AE signals. The detected
signals are limited by the maximum recorded signal, that
corresponds to the saturation level (8 V) of the amplifier,
and the noise level (= 80 mV or 500 mV, depending
on the transducer), giving a 1.5-2 decade detection
dynamics.

From the detected signals we obtain the time series
of the AE burst amplitudes, an example of which is
shown in Fig. 1. In the figure it is possible to distinguish
the different stress applications which generate large AE
events even long after the corresponding increase of stress.

We have performed a statistical analysis of these AE
series. In Fig. 2 the frequency histogram of the AE
amplitude of one of the recorded signals is shown. This
distribution exhibits a power law behavior, limited by
upper and lower cutoff, corresponding, respectively, to
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FIG. 1. Recorded signal of an acoustic emission time series.

Note that the five stronger emission bursts refer to the
increasing of the stress. The highest peaks correspond to the
amplifier saturation level. The signal sampling rate is 200 ms.
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FIG. 2. Comparison between the AE burst frequency distribu-
tion in the case of stressed (diamonds) and nonstressed (crosses)
samples.

the saturation threshold and the background noise level of
the experimental apparatus. In Fig. 2 the same analysis
for a background signal is also shown (AE in absence
of external stress). In this case the distribution obtained
is peaked around the noise level of the experimental
apparatus and decreases sharply afterward.

The AE integrated distribution [i.e., the number of
events N (V) whose amplitude is greater than V] can be
fitted by the following algebraic relation

N(V)=kV™? + ky; v =17 *02. (1)

The value of vy is obtained after repeating the same anal-
ysis on the AE signals obtained by different samples and
experimental apparatus (transducer with different charac-
teristic). Figure 3 shows an example of the resulting dis-
tributions, after subtraction of k,. It is worthwhile to note
that there is a slight departure from scaling behavior at
low amplitudes and at high amplitudes. This is due to
the onset of the above-mentioned upper and lower cutoff
levels of the experimental apparatus. However, the plots
present a well defined scaling behavior over at least one
and a half decades and clearly demonstrate a nonexponen-
tial decay. Apart from shifting factors due to the different
noise level and saturation threshold, we have found the
same power law behavior in every set of analyzed data.
This last point suggests that the microfracturing mecha-
nism does not depend on the details of the experiment and
possesses a universal statistical behavior, at least on the
energy and length scales considered.

The energy involved in the process is proportional to
the square of the amplitude of the AE event, and we can
obtain the energy release distribution by the following

relation:
1 +
N(E)~E™? 6= 27. @)
This relation gives, from our measurement of the value
of y, an exponent § = 1.3 = 0.1, which is in good

agreement with the exponent found in Refs. [11,12] and
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FIG. 3. Cumulate distribution of AE bursts with respect

to their amplitude for different samples and experimental
conditions, after subtraction of the offset. Fitting slopes are
plotted for comparison (0.52 = y = 0.84).

in Gutenberg’s law [6]. This result is a clear evidence
of an underlying critical dynamics, i.e., a nonexponential
relation between amplitude and number of events, and
thus confirms the absence of a characteristic length and
the self-similarity of the microfracturing phenomenon. In
addition, the quantitative coincidence of the measured
exponent with the result found in phenomena niled by a
dynamics acting on a different scale, strongly suggests a
general scale invariance of the fracturing processes.

One of the most interesting suggestions put forward
to account for the critical behavior of the microfracturing
process can be found in the SOC mechanism. By using
this framework we can think that our samples can ex-
ist in very many stable states, almost all of which have
different microscopic structures given by the porosity,
residual stress, and microcracks, etc. By perturbing the
sample, the system goes from one metastable state to an-
other through an energy diffusion process. However, this
diffusion process has a striking difference with respect to
the usual diffusion, because the local microscopic rigidity
of the material structure makes this a threshold process
that can stop in any of the metastable states. In this sense
the system is at some point of marginal stability, and it
is reasonable to expect it to exhibit a self-organized crit-
ical behavior. As in usual critical phenomena, the var-
ious microscopic aspects of the material should not be
crucial with respect to the critical properties. However,
this aspect can have some influence on the experiment
and therefore deserves a deeper analysis. For instance the
content of water in the plaster could modify the micro-
scopic rigidity of the samples (the threshold mechanism)
or the dissipation, therefore affecting the critical behavior.
In addition, also the spatial distribution of aftershocks
may be one clue for the microscopic dynamics of the phe-
nomenon. To address this question we are performing

further experiments whose results will be reported else-
where. Nevertheless, our experimental finding is also in
good agreement with the numierical and theoretical results
for the original SOC model of Bak et al. [4,14]. Thus,
the energy dissipation could be the hallmark of an un-
derlying SOC phenomenon determined by the fracturing
mechanism.

Another interesting point raised by the concept of SOC
is in the area of 1/f noise. In fact, it has been suggested
that the power law behavior of many time signal spectra
could be traced back to the scale invariance of SOC
systems dynamics. Although this mechanism for the
generation of 1/f noise is very interesting, it has been
shown [2,3] that it is not as general as originally believed
and that a SOC state does not imply a nontrivial scaling
of the noise spectrum. We then proceed to compute the
autocorrelation function and the power spectrum of our
time signals in order to look at the occurrence of 1/f
type spectrum. There are a number of accepted tech-
niques to characterize the random signals V (z). Both the
correlation function Cy (7) = (V(f)V(t + 7)) and the
spectral density Sy (f) = | X1, V (1;) e2™/% > quantify
correlations at the time scale 7 ~ 1/f. Generally,
Sy (f) and Cy (7) are connected by the Wiener-Kintchine
relations [15]. In the case of white noise one has
Cy (r) ~ 8 (7) and Sy (f) ~ const, while in the case of
the Brownian motion Sy (f) ~ 1/f2.

We have analyzed both the autocorrelation function and
the power spectrum of the AE signal time series, and
Fig. 4 shows the autocorrelation function for two typical
data sets. The behavior is an algebraic decay over almost
2 orders of magnitude, and the data fit gives the following
relation:

Cy(t) ~ 7% a=04%0.1. 3)
This corresponds to a noise spectrum of the type
Sy (f) ~ % B=1-a, 4)

autocorrelation function
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FIG. 4. Time autocorrelation functions of the AE signal

time series. The scaling law with a = 0.4 is reported for
comparison.
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and therefore, from our measurements, we find 8 =
0.6 = 0.1.

It is important to note that the upper cutoff of the
power law behavior of the correlation function is given by
the scale separation between the AE activity fluctuations
and the overall exponential decay of the activity of every
external stress of the sample. Although the errors on
the values of the « and B exponents are rather large
and the numerical estimates have to be considered only
as indicative, this result shows, in a striking way, the
temporal self-similarity of the microfracturing process.
Moreover, this behavior seems consistent with what is to
be expected for SOC systems with dissipation [16], which
show exponents for the power spectrum that depend on
the level of energy conservation.

In conclusion, we have shown that the AE activity
due to microfracturing processes in externally stressed
samples follows a power law statistical behavior which
is indicative of critical dynamics. This critical behavior
is seen also in the time correlation of the signals (1/f
noise spectrum), suggesting a spatial and time scale-
invariance of the phenomenon. The exponent derived
here for the AE signal amplitude distribution is very close
to those obtained in other fracturing processes [6,11,12]
ranging from earthquakes to microscopic phenomena.
This suggests that the fracturing process is a scale
invariant phenomenon with critical dynamics, that might
provide an example of a definite class of SOC systems
with universal properties.
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